Costs and economics of Terrestrial Energy’s Integral Molten Salt Reactor

Canadian David LeBlanc is developing the Integral Molten Salt Reactor, or IMSR. The goal is to commercialize the Terrestrial reactor by 2021.

Molten Salt and Oilsands
* Using nuclear produced steam for Oil Sands production long studied
* Vast majority of oil only accessible by In-Situ methods
* No turbine island needed so 30% to 40% the capital cost saved (instead of steam to turbine for electricity just send it underground to produce oil from oilsands)
* Oil sands producers expected to pay 200 Billion$ on carbon taxes over the next 35 years, funds mandated to be spent on cleantech initiatives
* Canada Oil Sands in ground reserves of 2 trillion barrels, current estimate 10% recoverable (likely much higher with cheaper steam)
* 64 GWth nuclear to add 6.4 million bbls/day (200B$/year revenue)
* 64 GWth needed as about 200 small 300MWth MSRs
* Oil Sands a bridge to MSRs then with time, MSRs a bridge to not needing oil

So each 300 MW thermal MSR would generate $1 billion per year in oil revenue from the oilsands.
A 300 MW thermal reactor would be the same as a 100 MW electrical reactor. Even if costs were as much proportionally as a $10 billion 1 GWe conventional nuclear reactor (the high costs of the most expensive european or US projects.) the $1 billion cost would be recovered in about 2-4 years. Also, they indicated that there is no turbine to produce electricity since only steam is used. So the costs should be $700 million max.

This profitability means that the first 200 units should easily be profitable. Usually making more units has a improvement rate in lowering costs by a few percentage points for each later unit. The oilsand units would also generate the money to help payoff research and development costs, which would initial come from oilsand taxes and oilsand partners.

In previous design discussions about a similar Denatured Molten Salt Reactor , David LeBlanc believed that capital costs could be 25% to 50% less for a simple DMSR converter design than for modern LWRs (light water reactors).

The 25 MWe version of the IMSR is the size of a fairly deep hottub

IMSR design
* No fuel fabrication cost or salt processing = extremely low fuel costs
* Under 0.1 cents/kwh
* Right size reactors, right pressure steam

Later units that include electricity generation can still send steam for cogeneration (use steam for desalination or the oilsand production. This provides another revenue stream for the IMSR nuclear plants.

Looking at the cost components of current nuclear reactors

                                 Old Nuclear    Coal  New LWR est  IMSR first IMSR later
1   Fuel                                         5.0          11.0    5.0   0.1  0.1
2   Operating, Maintenance - Labor and Materials 6.0           5.0    8.0   1.0  0.2
3   Pensions, Insurance, Taxes                   1.0           1.0    1.0   1.0  0.2
4   Regulatory Fees                              1.0           0.1    1.0   1.0  1.0
5   Property Taxes                               2.0           2.0    2.0   2.0  1.0
6   Capital                                      9.0           9.0   39.0  20.0  5.0
7   Decommissioning and DOE waste costs          5.0           0.0    5.0   0.5  0.1
8   Administrative / overheads                   1.0           1.0    1.0   1.0  1.0
Total                                           30.0          29.1   60.0  27.6  8.6   

I think the IMSR can get down to 0.86 cents per Kwh.