Planetary Resources And Luxembourg are partnering to Advance Space Asteroid Mining

Planetary Resources, the asteroid mining company, announced today that it has signed a Memorandum of Understanding with the Government of the Grand Duchy of Luxembourg and the banking institution Société Nationale de Crédit et d’Investissement (SNCI). This partnership with Luxembourg’s SpaceResources.lu initiative will advance technologies and lines of business toward the exploration and utilization of resources from asteroids. Just as Luxembourg accelerated the satellite communications industry through its investments, this funding for Planetary Resources Luxembourg will accelerate the space resources industry.

With the agreement, the Government of Luxembourg is considering a direct capital investment in Planetary Resources Luxembourg. This public equity position will be taken by the SNCI to become a minority shareholder. Planetary Resources Luxembourg plans to conduct key research and development activities. The pathway for identifying the most commercially viable near-Earth asteroids has led to the development of multiple transformative technologies that are applicable to global markets, including the agriculture, oil & gas, water quality and financial intelligence industries. The company’s Earth observation business, Ceres, will generate revenue and intellectual property in Europe and around the world which will further develop the technologies and services required for asteroid prospecting missions.

“We are delighted to begin working with Luxembourg to develop ground-breaking space technologies and services. Luxembourg has a proud history and global reputation in commercial space operations and we are honored to be working with their government, academia, and industry to further develop the limitless potential that awaits in the space resources industry,” said Chris Lewicki, President and CEO, Planetary Resources, Inc.

Étienne Schneider, Deputy Prime Minister and Minister of the Economy, Government of Luxembourg, said, “We are excited to welcome Planetary Resources, an industry leader, to work in Luxembourg and we look forward to a prosperous future together. The Grand Duchy offers an attractive overall framework for space resource utilization related activities, including but not limited to the legal and regulatory regime. Planetary Resources and its team bring in a wealth of knowledge and experience and will join the existing space sector in Luxembourg. By starting to put all this together, we will make the SpaceResources.lu initiative a success.”

This partnership will serve to advance and build upon Planetary Resources’ substantial accomplishments. Core hardware and software technologies developed at Planetary Resources were tested last year when the Arkyd-3R satellite was deployed from the International Space Station. The company has completed its next spacecraft, the Arkyd-6, scheduled for launch later this year. This mission will validate the thermographic sensor that will precisely measure temperature differences of objects on Earth, and when deployed on future asteroid missions it will acquire key data related to the presence of water and water-bearing minerals on asteroids.

Earth is finite, but our economic growth need not be

Asteroids will fuel a mass-constrained economy in orbit and back on Earth. In orbit, spacecraft propellant is a multi-billion dollar industry with each pound of fuel worth more than an equivalent pound of gold on Earth. Certain asteroids are loaded with hydrogen and oxygen, the components of rocket fuel. These asteroids can provide a fuel source that is 100 times closer energetically to Earth orbit, and thus far less expensive, than the Apollo-Era “bring-everything-with-you” propellant used today.

Back on Earth, platinum group metals are necessary for everything from catalytic converters to jewelry to the construction of electronics, medical devices, glass, and turbine blades. Despite their high price tags, these metals are used to manufacture one in four goods that we use everyday.

Today, the major sources of platinum group metals are concentrated in South Africa and Russia, and becoming increasingly hard to access over time. But in space, a single 500-meter platinum-rich asteroid contains more platinum than has been mined in the history of humanity. Planetary Resources is building the technology to access these resources today.

Discovery and Quantity
Millions of asteroids silently glide near Mars and Jupiter’s orbital slots and, over time, gravitational perturbations kick some of these asteroids closer to the Sun, creating the class of objects known as near-Earth asteroids.

Near Earth Asteroids

Near-Earth asteroids (NEAs) are generally defined as that population of asteroids which spends at least part of each orbit between 0.983 and 1.3 Astronomical Units from the Sun (1 Astronomical Unit is the Earth’s distance from the Sun). These asteroids were previously part of the Main Belt population or were once active comets.

In 1960, only 20 near-Earth asteroids were known, growing to 134 by the year 1990. Today, nearly 13,000 near-Earth asteroids are known to exist, and the number increases daily. Scientists believe the number may actually exceed one million. Of the asteroids currently observed, 981 of these objects are larger than one kilometer in diameter. The majority of the remaining known near-Earth asteroids are believed to be between 100 m and 1 km in diameter, with those smaller than 100 meters wide numbering slightly more than 2,800.

Near-Earth asteroids are categorized into three groups based on their distances from the Sun: the Atens, Apollos, and Amors. Some near-Earth asteroids spend nearly all of their time outside Earth’s orbit, while other objects, known as earth-crossers, have orbits that intersect Earth’s orbit.

Two near-Earth asteroids have been visited by robotic spacecraft: 433 Eros by NASA’s NEAR mission, and 25143 Itokawa by Japan’s Hayabusa mission. NASA is currently working on the OSIRIS-REx mission to visit the carbonaceous asteroid 1999 RQ36 in 2019. Our telescopic capabilities for asteroid observation are also improving. One example is the Large Scale Synoptic Telescope (LSST) that recently received a $20 million gift from Planetary Resources investor Charles Simonyi.

Near Earth Asteroids (NEAs) are the low-hanging fruit of the solar system, the easiest of all space resources to both access and return from. There are over 42 trillion tons of resource that approach within 45 million km of Earth’s orbit. More than 13,000 NEAs have been identified and studied in some detail, and it is from this group that our first wave of exploration targets will be found.

To put 42 trillion tons of resource into perspective, let’s take, for example, iron ore. It is one of the most abundant minerals on earth, comprising over 5% of the Earth’s crust. The United States Geological Survey (USGS) estimates that there are 800 billion tonnes of iron ore worldwide. NEAs therefore represent a potential mineral resource at least fifty times larger than the Earth’s entire iron ore reserve.

And what does 45 million km from Earth really mean? The moon is approximately 384,000 km away from Earth, so these resources are within approximately 110 lunar distances of earth.

While 110 lunar distances may sound like a long way, it is important to think in terms of energy, not just distance. The majority of energy expended in space travel, over 60%, is utilized in just getting off planet Earth and orbiting at those first 200 km of altitude. Another 30% is needed to escape from Earth’s gravitational influence, leaving less than 10% of total required energy to navigate interplanetary space and rendezvous with the closest NEAs.

Or to put it another way – over half of the 13,000 known NEAs are energetically closer than the surface of the Moon.

SOURCES- Planetary Resources, Youtube