Researchers have demonstrated an almost four-fold boost of the carrier multiplication yield with nanoengineered quantum dots

Los Alamos researchers have demonstrated an almost four-fold boost of the carrier multiplication yield with nanoengineered quantum dots. Carrier multiplication is when a single photon can excite multiple electrons. Quantum dots are novel nanostructures that can become the basis of the next generation of solar cells, capable of squeezing additional electricity out of the extra energy of blue and ultraviolet photons.

“Typical solar cells absorb a wide portion of the solar spectrum, but because of the rapid cooling of energetic (or ‘hot’) charge carriers, the extra energy of blue and ultraviolet solar photons is wasted in producing heat,” said Victor Klimov, director of the Center for Advanced Solar Photophysics (CASP) at Los Alamos National Laboratory.

Getting two for the price of one

“In principle, this lost energy can be recovered by converting it into additional photocurrent via carrier multiplication. In that case, collision of a hot carrier with a valence-band electron excites it across the energy gap,” Klimov said. “In this way, absorption of a single photon from the high-energy end of the solar spectrum produces not just one but two electron-hole pairs, which in terms of power output means getting two for the price of one.”

Carrier multiplication is inefficient in the bulk solids used in ordinary solar cells but is appreciably enhanced in ultrasmall semiconductor particles – also called quantum dots — as was first demonstrated by LANL researchers in 2004 (Schaller & Klimov, Phys. Rev. Lett. 92, 186601, 2004). In conventional quantum dots, however, carrier multiplication is not efficient enough to boost the power output of practical devices.

Nature Communications – Enhanced carrier multiplication in engineered quasi-type-II quantum dots

A new study conducted within the Center for Advanced Solar Photophysics demonstrates that appropriately engineered core/shell nanostructures made of lead selenide and cadmium selenide (PbSe and CdSe) can increase the carrier multiplication yield four-fold over simple PbSe quantum dots.

What this could mean in future

While the present CASP work is based on PbSe/CdSe quantum dots, the concept of “carrier-multiplication engineering” through control of intraband cooling is general, and should be realizable with other combinations of materials and/or nanostructure geometries.

Jeff Pietryga, lead CASP chemist says, “Further enhancement in carrier multiplication should be possible by combining this new approach with other demonstrated means for increasing multicarrier yields, such as by using shape-control (as in nanorods) and/or materials in which cooling is already naturally slower, like PbTe.” Applied together, these strategies might provide a practical route to nanostructures exhibiting carrier multiplication performance approaching the limits imposed by energy conservation.

One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks