China will look to Thorium Molten Salt Reactors to for energy without water cooling for Arid regions starting in 2040

“The TMSR (thorium molten salt reactor) is getting $400 million in support from the Chinese government, because several regions of China face water shortages in large part because China’s many coal-fired power plants require water for for cooling, as do China’s 17 conventional nuclear reactors. “Water scarcity is very serious for China,” he said. “Most of the water has been consumed by electricity companies – for coal but also nuclear.”

Xu Hongjie of the Chinese Academy of Sciences (CAS) in Shanghai indicated that one of the two reactors he’s developing should be ready in a 100-megawatt demonstrator version by 2024, and for full deployment by 2035. A second one, based on liquid thorium fuel instead of solid, would come later, he said, hinting that it might not yet have full government financial backing.

In a presentation at the Thorium Energy Conference 2013 (ThEC13) here, he referred to both reactors as thorium molten salt reactors (TMSR). The solid fuel version uses “pebble bed” fuel – much different from today’s fuel rods – and molten salt coolant. The liquid version uses a thorium fuel mixed with molten salt. Both run at significantly higher temperatures than conventional reactors, making them suitable as industrial heat sources in industries such as cement, steel, and oil and chemicals. The thorium can also reduce the waste and the weapons proliferation threat compared to conventional reactors.

One of two timelines that Hu included in his presentation showed that he expects to complete a 2-megawatt pilot for the solid fuel version by around 2015, and a 100-MW demonstrator model of the same by 2024, before readying it for live use in 2035 in “small modular” form (general industry nomenclature would call the solid fuel version an “FHR”, or fluoride salt-cooled high temperature reactor).

That timeline did not show a target date for a 2-MW liquid-fueled pilot reactor, which a year ago appeared to have slipped from 2017 to 2020. It did, however, show a 10-MW liquid-fueled pilot at around 2024, and a demonstrator version by 2035. It did not include a commercialization date. “For liquid, we still need the financial support from the government,” Hongjie said.

China has also talked about using TMSRs for coal gasification, and to convert coal to olefin and coal to diesel.

Hongjie told me the TMSRs would be used for electricity generation as well, although one slide in his presentation notes that the aim is to develop “non-electric” applications. Earlier this week at the conference, Nobel prize winning physicist Carlo Rubbia repeated an observation of his from a few years ago that China could generate the 2007 equivalent of its total electricity production – 3.2 trillion kWh, using a relatively small amount of thorium.

With those ambitious plans and with the program currently funded at around $400 million, Hongjie suggested that at some next stage the TMSR program will need an extra $2 billion “for the whole alternatives.”

China is collaborating with the U.S. Department of Energy on the molten salt-cooled reactor, which is the only publicly declared MSR programme in the world with fun

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

China will look to Thorium Molten Salt Reactors to for energy without water cooling for Arid regions starting in 2040

“The TMSR (thorium molten salt reactor) is getting $400 million in support from the Chinese government, because several regions of China face water shortages in large part because China’s many coal-fired power plants require water for for cooling, as do China’s 17 conventional nuclear reactors. “Water scarcity is very serious for China,” he said. “Most of the water has been consumed by electricity companies – for coal but also nuclear.”

Xu Hongjie of the Chinese Academy of Sciences (CAS) in Shanghai indicated that one of the two reactors he’s developing should be ready in a 100-megawatt demonstrator version by 2024, and for full deployment by 2035. A second one, based on liquid thorium fuel instead of solid, would come later, he said, hinting that it might not yet have full government financial backing.

In a presentation at the Thorium Energy Conference 2013 (ThEC13) here, he referred to both reactors as thorium molten salt reactors (TMSR). The solid fuel version uses “pebble bed” fuel – much different from today’s fuel rods – and molten salt coolant. The liquid version uses a thorium fuel mixed with molten salt. Both run at significantly higher temperatures than conventional reactors, making them suitable as industrial heat sources in industries such as cement, steel, and oil and chemicals. The thorium can also reduce the waste and the weapons proliferation threat compared to conventional reactors.

One of two timelines that Hu included in his presentation showed that he expects to complete a 2-megawatt pilot for the solid fuel version by around 2015, and a 100-MW demonstrator model of the same by 2024, before readying it for live use in 2035 in “small modular” form (general industry nomenclature would call the solid fuel version an “FHR”, or fluoride salt-cooled high temperature reactor).

That timeline did not show a target date for a 2-MW liquid-fueled pilot reactor, which a year ago appeared to have slipped from 2017 to 2020. It did, however, show a 10-MW liquid-fueled pilot at around 2024, and a demonstrator version by 2035. It did not include a commercialization date. “For liquid, we still need the financial support from the government,” Hongjie said.

China has also talked about using TMSRs for coal gasification, and to convert coal to olefin and coal to diesel.

Hongjie told me the TMSRs would be used for electricity generation as well, although one slide in his presentation notes that the aim is to develop “non-electric” applications. Earlier this week at the conference, Nobel prize winning physicist Carlo Rubbia repeated an observation of his from a few years ago that China could generate the 2007 equivalent of its total electricity production – 3.2 trillion kWh, using a relatively small amount of thorium.

With those ambitious plans and with the program currently funded at around $400 million, Hongjie suggested that at some next stage the TMSR program will need an extra $2 billion “for the whole alternatives.”

China is collaborating with the U.S. Department of Energy on the molten salt-cooled reactor, which is the only publicly declared MSR programme in the world with fun

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks