Solar Wind Energy Mechanism Could Help Nuclear Fusion Researchers add and remove energy from ions in plasma

The solar wind is not like wind on Earth. Here on Earth, atmospheric winds carry nitrogen, oxygen, water vapor along together; all species move with the same speed and they have the same temperature. The solar wind, however, is much stranger. Chemical elements of the solar wind such as hydrogen, helium, and heavier ions, blow at different speeds; they have different temperatures; and, strangest of all, the temperatures change with direction.

The solar wind flows away from the sun at speeds up to and exceeding 500 km/s (a million mph). As solar wind leaves the sun, it accelerates, tripling in speed as it passes through the corona. Furthermore, something inside the solar wind continues to add heat even as it blows into the cold of space.”

The behavior of heavy ions in the solar wind is what intrigues fusion researchers. Kasper explains: “When you look at fusion reactors on Earth, one of the big challenges is contamination. Heavy ions that sputter off the metal walls of the fusion chamber get into the plasma where the fusion takes place. Heavy ions radiate heat. This can cool the plasma so much that it shuts down the fusion reaction.” Ion cyclotron waves of the type Kasper has found in the solar wind might provide a way to reverse this process. Theoretically, they could be used to heat and/or remove the heavy ions, restoring thermal balance to the fusing plasma.

Plasma carrying a spectrum of counterpropagating field-aligned ion-cyclotron waves can strongly and preferentially heat ions through a stochastic Fermi mechanism. Such a process has been proposed to explain the extreme temperatures, temperature anisotropies, and speeds of ions in the solar corona and solar wind. We quantify how differential flow between ion species results in a Doppler shift in the wave spectrum that can prevent this strong heating. Two critical values of differential flow are derived for strong heating of the core and tail of a given ion distribution function. Our comparison of these predictions to observations from the Wind spacecraft reveals excellent agreement. Solar wind helium that meets the condition for strong core heating is nearly 7 times hotter than hydrogen on average. Ion-cyclotron resonance contributes to heating in the solar wind, and there is a close link between heating, differential flow, and temperature anisotropy.

SOURCES – NASA, Physics Review Letters

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks