Pages

January 26, 2013

Predicting the improvement rates for many technologies

Competition is intense among rival technologies and success depends on predicting their future trajectory of performance. To resolve this challenge, managers often follow popular heuristics, generalizations, or “laws” like the Moore’s Law. We propose a model, Step And Wait (SAW), for predicting the path of technological innovation and compare its performance against eight models for 25 technologies and 804 technologies-years across six markets. The estimates of the model provide four important results. First, Moore's Law and Kryder's law do not generalize across markets; none holds for all technologies even in a single market. Second, SAW produces superior predictions over traditional methods, such as the Bass model or Gompertz law, and can form predictions for a completely new technology, by incorporating information from other categories on time varying covariates. Third, analysis of the model parameters suggests that: i) recent technologies improve at a faster rate than old technologies; ii) as the number of competitors increases, performance improves in smaller steps and longer waits; iii) later entrants and technologies that have a number of prior steps tend to have smaller steps and shorter waits; but iv) technologies with long average wait time continue to have large steps. Fourth, technologies cluster in their performance by market.


Stop and Wait from the research paper



Stop and Wait improvement graphs






Step and Wait (SAW) based on 26 technologies in six markets from lighting to automobile batteries. With possibly mislabelled last column. Not percent per year/

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
blog comments powered by Disqus