Pages

September 17, 2012

Rethink robotics reveals its revolutionary Baxter Manufacturing Robot

Technology Review reveals the Baxter robot from Rethink Robotics (renamed from Heartland Robotics)

Baxter, is six feet tall, 300 pounds, and a robot. For a hulking machine, Baxter is remarkably expressive. A pair of eyes on the screen that serves as a face stare down as the robot picks up plastic components, look concerned when it makes a mistake, and direct its glance at its next task when one is finished. It's cute. But the real point of these expressions is that they let workers nearby know instantly if Baxter is performing appropriately, and they provide clues to what it is about to do next. Even more amazing, when Baxter is done with one task, a fellow worker can simply show the robot how to start another. "Almost anyone, literally, can in very short order be shown how to program it," says Chris Budnick, president of Vanguard Plastics. "It's a matter of a couple of minutes."

Baxter is the first of a new generation of smarter, more adaptive industrial robots. Conventional industrial robots are expensive to program, incapable of handling even small deviations in their environment, and so dangerous that they have to be physically separated from human workers by cages. So even as robotics have become commonplace in the automotive and pharmaceutical industries, they remain impractical in many other types of manufacturing. Baxter, however, can be programmed more easily than a Tivo and can deftly respond to a toppled-over part or shifted table. And it is so safe that Baxter's developer, Rethink Robotics, which loaned Baxter to Vanguard Plastics, believes it can work seamlessly alongside its human coworkers.

Get a grip: Baxter demonstrates a simple manufacturing task at Rethink Robotics’ headquarters in Boston. Technology Review

Baxter is twenty times cheaper then the $400,000 Willow Garage PR2 robot which has a similar form but is more difficult to program. Rethink Robotics estimates that Baxter can provide work for $4 an hour.



Baxter's talents could, for the first time, bring the benefits of robotics and automation to areas of work where it never made sense before. This might mean lost jobs for an already struggling low-skill workforce. But it could also help the United States compete in the global manufacturing market against countries that offer low-wage labor. The amount of manufacturing in the United States has declined dramatically over the last few decades, in part because workers in other parts of the world will perform simple and menial jobs for far less. But robots like Baxter could wipe out that advantage by taking over such tasks, making it once again possible for many industries to competitively manufacture their products in the United States and other developed countries.

Brooks, who founded Rethink in 2008 after leaving both iRobot and MIT, realized that robots could take over many jobs if they could be made safe, adaptable, and ridiculously easy to program. "Everyone was thinking about how to do it with the current industrial robots," he says. "I said, 'Let's make a different sort of robot for industry.'"

The result is something very different indeed. Much like a human worker, Baxter can be taught in minutes how to recognize a new object or perform a new task. To teach Baxter to recognize something, you just hold the object in front of one of its cameras, which are located in the head, in the chest, and at the end of each arm. To program an action, you can move one of Baxter's two giant arms through the desired motion and select from a number of preprogrammed actions using a pair of dial controls found in each forearm. When you grab one of Baxter's arms, it feels light as a feather. Its motors compensate in response to your touch, making the heavy limb easy to move through the air.

Sophisticated computer vision software means that even if a plastic widget has toppled over, Baxter will still recognize it.

Vanguard Plastics already has 24 conventional robots. They can pick and place objects with fantastic accuracy and speed. But it takes up to a day to program one, and if anything is misaligned they will grab at thin air all day. These robots must also be separated from human workers by protective fencing.

Baxter requires no such barriers. Brooks likes to demonstrate his robot's safety features by putting his head in the way of one of its giant arms as it swings through a task, smiling as he receives nothing more than a gentle bump. Baxter moves too slowly and gently to do harm, and an array of sonar sensors positioned around its head can detect human movement. The robot also reacts to the sudden change in force that occurs with an unexpected impact and responds by stopping instantly.

The International Federation of Robotics estimates that there are now 1.1 million working robots around the world. About 80 percent of all the work involved in manufacturing a car is now done by machines. In some industries, however, the volume is too low to make automation worthwhile, or the product line changes too rapidly in response to new demand or innovation. This includes small-scale manufacturing but also relatively advanced industries such as aerospace and cell-phone manufacturing.

"It takes significant resources for a company to set up a work environment for a robot," says Julie Shah, an assistant professor of aeronautics and astronautics at MIT, who studies the role of robots in manufacturing. "It requires suppliers providing materials in a certain way, it requires designing the whole factory infrastructure, and it requires caging the robot. If you need to reprogram these robots, it often takes special expertise or external consultants."

Some fear that overcoming those obstacles could cost human jobs. But Brooks doesn't agree. He says Baxter is designed to make human workers more efficient, not to replace them. "An electric drill makes a home contractor more productive," he says. "Should we ban electric drills so there are more jobs for home contractors? You ask any home contractor that."

Other experts agree that robots like Baxter could improve U.S. employment prospects in the long term.

The Baxter robot will cost $22,000. This is more than the rumored $5000 cost for low cost robot arm, but Baxter has two arms and it is smart enough and safe enough to eliminate many of the hidden costs of setting up a safe environment for industrial robots.




If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
blog comments powered by Disqus