Pages

July 01, 2012

Improved Vacuum transistors could beat silicon-based semiconductor electronics

Eurekalert - researchers at the University of Pittsburgh are proposing a new spin on an old method: a switch from the use of silicon electronics back to vacuums as a medium for electron transport—exhibiting a significant paradigm shift in electronics

"Physical barriers are blocking scientists from achieving more efficient electronics," said Hong Koo Kim, principal investigator on the project and Bell of Pennsylvania/Bell Atlantic Professor in the University of Pittsburgh's Swanson School of Engineering. "We worked toward solving that road block by investigating transistors and its predecessor—the vacuum."

The ultimate limit of transistor speed, says Kim, is determined by the "electron transit time," or the time it takes an electron to travel from one device to the other. Electrons traveling inside a semiconductor device frequently experience collisions or scattering in the solid-state medium. Kim likens this to driving a vehicle on a bumpy road—cars cannot speed up very much. Likewise, the electron energy needed to produce faster electronics is hindered.

"The best way to avoid this scattering—or traffic jam—would be to use no medium at all, like vacuum or the air in a nanometer scale space," said Kim. "Think of it as an airplane in the sky creating an unobstructed journey to its destination."

Conventional vacuum electronic devices require high voltage, and they aren't compatible with many applications. Therefore, his team decided to redesign the structure of the vacuum electronic device altogether. With the assistance of Siwapon Srisonphan, a Pitt PhD candidate, and Yun Suk Jung, a Pitt postdoctoral fellow in electrical and computer engineering, Kim and his team discovered that electrons trapped inside a semiconductor at the interface with an oxide or metal layer can be easily extracted out into the air. The electrons harbored at the interface form a sheet of charges, called two-dimensional electron gas. Kim found that the Coulombic repulsion—the interaction between electrically charged particles—in the electron layer enables the easy emission of electrons out of silicon. The team extracted electrons from the silicon structure efficiently by applying a negligible amount of voltage and then placed them in the air, allowing them to travel ballistically in a nanometer-scale channel without any collisions or scattering.

"The emission of this electron system into vacuum channels could enable a new class of low-power, high-speed transistors, and it's also compatible with current silicon electronics, complementing those electronics by adding new functions that are faster and more energy efficient due to the low voltage," said Kim.

With this finding, he says, there is the potential for the vacuum transistor concept to come back, but in a fundamentally different and improved way.


Ballistic transport of electrons in nano-void channels in silicon MOS

Nature Nanotechnology - Metal–oxide–semiconductor field-effect transistor with a vacuum channel





ABSTRACT - High-speed electronic devices rely on short carrier transport times, which are usually achieved by decreasing the channel length and/or increasing the carrier velocity. Ideally, the carriers enter into a ballistic transport regime in which they are not scattered. However, it is difficult to achieve ballistic transport in a solid-state medium because the high electric fields used to increase the carrier velocity also increase scattering. Vacuum is an ideal medium for ballistic transport, but vacuum electronic devices commonly suffer from low emission currents and high operating voltages. Here, we report the fabrication of a low-voltage field-effect transistor with a vertical vacuum channel (channel length of ~20 nm) etched into a metal–oxide–semiconductor substrate. We measure a transconductance of 20 nS µm–1, an on/off ratio of 500 and a turn-on gate voltage of 0.5 V under ambient conditions. Coulombic repulsion in the two-dimensional electron system at the interface between the oxide and the metal or the semiconductor reduces the energy barrier to electron emission, leading to a high emission current density (~1 × 10^5 A cm–2) under a bias of only 1 V. The emission of two-dimensional electron systems into vacuum channels could enable a new class of low-power, high-speed transistors.

Supplemental material (2.1 megabytes)


If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
blog comments powered by Disqus