Simpler and more controlled method to place Nanoparticles on nanowires to enhance electrical and catalytic performance

Engineers at Stanford have found a novel method for “decorating” nanowires with chains of tiny particles to increase their electrical and catalytic performance. The new technique is simpler, faster and provides greater control than earlier methods and could lead to better batteries, solar cells and catalysts. The development, say the researchers, might someday lead to better lithium-ion batteries, more efficient thin-film solar cells and improved catalysts that yield new synthetic fuels.

The key to the Stanford team’s discovery was a flame. Engineers had long known that nanoparticles could be adhered to nanowires to increase surface area, but the methods for creating them were not very effective in forming the much-desired porous nanoparticle chain structures. These other methods proved too slow and resulted in a too-dense, thick layer of nanoparticles coating the wires, doing little to increase the surface area.

Zheng and her team wondered whether a quick burst of flame might work better, so they tried it.

Zheng dipped the nanowires in a solvent-based gel of metal and salt, then air-dried them before applying the flame. In her process the solvent burns away in a few seconds, allowing the all-important nanoparticles to crystalize into branch-like structures fanning out from the nanowires.

“We were a little surprised by how well it worked,” said Zheng. “It performed beautifully.”

Decoration with nanoparticles creates intricate surface patterns full of nooks and crannies, twists and turns that greatly improve surface area. Image courtesy of the Stanford Nanocharacterization Laboratory.

Nano Letters – Sol-Flame Synthesis: A General Strategy To Decorate Nanowires with Metal Oxide/Noble Metal Nanoparticles

The hybrid structure of nanoparticle-decorated nanowires (NP@NW) combines the merits of large specific surface areas for NPs and anisotropic properties for NWs and is a desirable structure for applications including batteries, dye-sensitized solar cells, photoelectrochemical water splitting, and catalysis. Here, we report a novel sol-flame method to synthesize the NP@NW hybrid structure with two unique characteristics: (1) large loading of NPs per NW with the morphology of NP chains fanning radially from the NW core and (2) intimate contact between NPs and NWs. Both features are advantageous for the above applications that involve both surface reactions and charge transport processes. Moreover, the sol-flame method is simple and general, with which we have successfully decorated various NWs with binary/ternary metal oxide and even noble metal NPs. The unique aspects of the sol-flame method arise from the ultrafast heating rate and the high temperature of flame, which enables rapid solvent evaporation and combustion, and the combustion gaseous products blow out NPs as they nucleate, forming the NP chains around NWs.

Dramatic performance, unprecedented control

“The performance improvements have so far been dramatic,” said In Sun Cho, a post-doctoral fellow in Zheng’s lab and co-author of the paper.

Zheng and team have dubbed the technique the sol-flame method, for the combination of solvent and flame that yields the nanoparticle structures. The method appears general enough to work with many nanowire and nanoparticle materials and, perhaps more importantly, provides an unprecedented degree of engineering control in creating the nanoparticle decorations.

The high temperature of the flame and brief annealing time ensure that the nanoparticles are small and spread evenly across the nanowires. And, by varying the concentration of nanoparticle in the precursor solution and the number of times the wires are dip-coated, the Stanford team was able to vary the size of the nanoparticle decorations from tens to hundreds of nanometers, and the density from tens to hundreds of particles per square micrometer.

“Though more research is needed, such precision is crucial and could bolster the wider adoption of the process,” said Zheng.

12 pages of supplemental information

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks