Luminescent ‘LED-type’ solar cell design breaks efficiency record

To produce the maximum amount of energy, solar cells are designed to absorb as much light from the Sun as possible. Now researchers from the University of California, Berkeley, have suggested – and demonstrated – a counterintuitive concept: solar cells should be designed to be more like LEDs, able to emit light as well as absorb it. (H/T Daniel Ravennest)

There is a limit to the amount of electrical energy that can be harvested from sunlight hitting a typical solar cell. This absolute limit is, theoretically, about 33.5 percent. That means that at most 33.5 percent of the energy from incoming photons will be absorbed and converted into useful electrical energy.

Yet for five decades, researchers were unable to come close to achieving this efficiency: as of 2010, the highest anyone had come was just more than 26 percent. (This is for flat-plate, “single junction” solar cells, which absorb light waves above a specific frequency. “Multi-junction” cells, which have multiple layers and absorb multiple frequencies, are able to achieve higher efficiencies.)

Recently, some are designing solar cells to emit light – so that photons do not become “lost” within a cell – has the natural effect of increasing the voltage produced by the solar cell. “If you have a solar cell that is a good emitter of light, it also makes it produce a higher voltage,” which in turn increases the amount of electrical energy that can be harvested from the cell for each unit of sunlight, Miller says.

This past year, a Bay area-based company called Alta Devices, co-founded by Yablonovitch, used the new concept to create a prototype solar cell made of gallium arsenide (GaAs), a material often used to make solar cells in satellites. The prototype broke the record, jumping from 26 percent to 28.3 percent efficiency. The company achieved this milestone, in part, by designing the cell to allow light to escape as easily as possible from the cell – using techniques that include, for example, increasing the reflectivity of the rear mirror, which sends incoming photons back out through the front of the device.

Yablonovitch says he hopes researchers will be able to use this technique to achieve efficiencies close to 30 percent in the coming years. And since the work applies to all types of solar cells, the findings have implications throughout the field.

Caption: This is the high-efficiency Alta Devices solar cell. Credit: Joe Foster, Alta Devices

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks