Pages

April 02, 2012

Bending light and sound up to 360 degrees instead of just 90 degrees without losses gradient index lenses for fiber optic communication gains

New Journal of Physics - When an optical fiber is bent by more than 90 degrees, the light begins to leak away, posing a problem for fiber optics communications. But by using special lenses that can bend light by not only 90°, but also 180° (i.e., a U-turn) or 360° (i.e., a full loop), scientists may limit light leakage in optical fibers and overcome this problem, not to mention provide a useful material for many other applications.

We numerically study the focusing and bending effects of light and sound waves through heterogeneous isotropic cylindrical and spherical devices. We first point out that transformation optics and acoustics show that the control of light requires spatially varying anisotropic permittivity and permeability, while the control of sound is achieved via spatially anisotropic density and isotropic compressibility. Moreover, homogenization theory applied to electromagnetic and acoustic periodic structures leads to such artificial (although not spatially varying) anisotropic permittivity, permeability and density. We stress that homogenization is thus a natural mathematical tool for the design of structured metamaterials. To illustrate the two-step geometric transform-homogenization approach, we consider the design of cylindrical and spherical electromagnetic and acoustic lenses displaying some artificial anisotropy along their optical axis (direction of periodicity of the structural elements). Applications are sought in the design of Eaton and Luneburg lenses bending light at angles ranging from 90° to 360°, or mimicking a Schwartzchild metric, i.e. a black hole. All of these spherical metamaterials are characterized by a refractive index varying inversely with the radius which is approximated by concentric layers of homogeneous material. We finally propose some structured cylindrical metamaterials consisting of infinitely conducting or rigid toroidal channels in a homogeneous bulk material focusing light or sound waves. The functionality of these metamaterials is demonstrated via full-wave three-dimensional computations using nodal elements in the context of acoustics, and finite edge-elements in electromagnetics.






Our paper discusses a variety of invisible gradient index lenses of cylindrical and spherical shape that can control light and sound trajectories, leading not only to focusing by, but also to U turn effects. We have performed three-dimensional finite element computations and have explained the possibly antagonistic role played by artificial anisotropy induced by the heterogeneous structure of such lenses.

Wider implications. Future studies might include experimental validation of enhanced light and sound waves in such invisible devices.



If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
blog comments powered by Disqus