Pages

March 27, 2012

A Reversibly Collapsible structure with no moving parts

Inspired by a toy, the ‘buckliball’ — a collapsible structure fabricated from a single piece of material — represents a new class of 3-D, origami-like structures. Motivated by the desire to determine the simplest 3-D structure that could take advantage of mechanical instability to collapse reversibly, a group of engineers at MIT and Harvard University were stymied — until one of them happened across a collapsible, spherical toy that resembled the structures they’d been exploring, but with a complex layout of 26 solid moving elements and 48 rotating hinges.

The toy inspired the engineers to create the “buckliball,” a hollow, spherical object made of soft rubber containing no moving parts, but fashioned with 24 carefully spaced dimples. When the air is sucked out of a buckliball with a syringe, the thin ligaments forming columns between lateral dimples collapse.






When the buckliball’s thin ligaments buckle, the thicker ligaments forming rows between dimples undergo a series of movements the researchers refer to as a “cooperative buckling cascade.” Some of the thick ligaments rotate clockwise, others counterclockwise — but all move simultaneously and harmoniously, turning the original circular dimples into vertical and horizontal ellipses in alternating patterns before closing them entirely. As a result, the buckliball morphs into a rhombicuboctahedron about half the size (46 percent) of the original sphere.

The researchers named their new structure for its use of buckling and its resemblance to buckyballs, spherical all-carbon molecules whose name was inspired by the geodesic domes created by architect-inventor Buckminster Fuller. The buckliball is the first morphable structure to incorporate buckling as a desirable engineering design element. The buckling process induces folding in portions of the sphere — similar to the way paper folds in origami — so the researchers place their buckliball in a larger framework of buckling-induced origami they call “buckligami.”

Because their collapse is fully reversible and can be achieved without moving parts, morphable structures such as the buckliball have the potential for widespread applications, from the micro- to macroscale. They could be used to create large buildings with collapsible roofs or walls, tiny drug-delivery capsules or soft movable joints requiring no mechanical pieces. They also have the potential to transform Transformers and other kinds of toys.

Chen, who was visiting Harvard at the time, determined that only five spherical geometric structures have the potential for reversible buckling-induced collapse. (The specific example of Fuller’s 12-hole rhombicuboctahedron that collapses into a cuboctahedron is one of these five.) Design parameters for buckliballs include dimple size, the thickness of the thin shell inside the dimple and the stiffness of the material used to fabricate the buckliball.

Nature, it appears, has already figured this out. Viruses inject their nucleic acids into a host through a reversible structural transformation in which 60 holes open or close based on changes in the acidity of the cell’s environment, a different mechanism that achieves a similar reversible collapse at the nanoscale.

“What’s exciting about this work is that it uses instabilities to basically amplify small or moderate pressures into dramatic motion,” says Carmel Majidi, an assistant professor of mechanical engineering at Carnegie Mellon University whose research in soft robotics focuses on stretchable skin-like materials containing sensors. “One limitation of working with soft-material robotics is that they’re soft; they can’t produce the high pressures you get with heavy machines, so you’re left with machines that provide only fairly moderate pressures. This makes it difficult to achieve dramatic deformations. If you use a robotic skin as an assistive medical device on a human, it can monitor motion. But with advancements like the buckliball, the skin may even be able to actively change its shape and directly help with motor tasks.”


If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
blog comments powered by Disqus