March 13, 2012

James Camerons Deep Dive Technical Innovations and Other Deep Sea Targets

Popular Mechanics interviewed James Cameron about his deep sea quests and his technological innovations

Cameron pioneered the use of syntactic foam as a structural material. What are the benefits of making the sub’s structure double as the flotation system?

Syntactic foam is an epoxy matrix containing glass microspheres that are hollow. It’s been the standard of deep-ocean construction for about the last 20 years. It had always been used as passive flotation. We thought it was silly to build a vehicle out of negatively buoyant substances, like aluminum or steel, and then have to add all this flotation to get it neutrally buoyant so it could operate at the bottom of the ocean.

We had to make syntactic foam stronger, and we had to make it a more uniform, more consistent material.

Costs $8 million

It’s going to be in the zone of $8 million. I spent two and a half million dollars building the ROVs that we used to explore the inside of the Titanic and the Bismarck, and then we took them to the hydrothermal vents in 2003, and then we took them to the Titanic again in 2005. Those things eventually paid for themselves twice over, so there’s no reason to assume that I can’t make money with this vehicle as well, or at least pay for it.




Why dive to the Mariana Trench?

Two of the deepest places in the world’s oceans exist in the Mariana Trench system. But also of interest are the Kermadec Trench and the Tonga Trench, which has possibly the second deepest spot in the world’s oceans—close to 36,000 feet. So there are a number of targets around the Southwestern Pacific that need to be explored. And there are other deep trenches in the world as well. They’re the last great frontier for exploration on this planet.

The Kermadec Trench is one of Earth's deepest oceanic trenches, reaching a depth of 10,047 metres (32,963 ft). Formed by the subduction of the Pacific Plate under the Indo-Australian Plate, it runs over a thousand kilometres parallel with and to the east of the Kermadec Ridge and island arc, from near the northeastern tip of New Zealand's North Island to the trench's junction with the Louisville seamount chain northeast of Monowai Seamount. The Tonga Trench marks the continuation of subduction beyond this point. Subduction south of the Kermadec Trench is marked by the shallower Hikurangi Trench.


       Trench           Ocean           Depth
Mariana Trench          Pacific Ocean   11,033 m (36,198 ft)
Tonga Trench            Pacific Ocean   10,882 m (35,702 ft)
Kuril–Kamchatka Trench  Pacific Ocean   10,542 m (34,587 ft)
Philippine Trench       Pacific Ocean   10,540 m (34,580 ft)
Kermadec Trench         Pacific Ocean   10,047 m (32,963 ft)
Izu-Bonin Trench        Pacific Ocean   9,780 m (32,090 ft)
Japan Trench            Pacific Ocean   9,000 m (30,000 ft)
Puerto Rico Trench      Atlantic Ocean  8,800 m (28,900 ft)
Peru-Chile Trench       Pacific Ocean   8,065 m (26,460 ft)

Wikipedia on the Mariana Trench

The Mariana Trench or Marianas Trench is the deepest part of the world's oceans. It is located in the western Pacific Ocean, to the east of the Mariana Islands. The trench is about 2,550 kilometres (1,580 mi) long but has a mean width of only 69 kilometres (43 mi). It reaches a maximum-known depth of about 10.91 kilometres (6.78 mi) (35,800 ft) at the Challenger Deep, a small slot-shaped valley in its floor, at its southern end,[2] although some unrepeated measurements place the deepest portion at 11.03 kilometres (6.85 mi)

Just how deep is the Mariana Trench?

First off, here are the average depths of the earth's oceans; the Arctic Ocean is 1,038 meters (3,407 feet) deep, the Indian Ocean is 3,872 meters (12,740 feet) deep, the Atlantic Ocean is 3,872 meters (12,254 feet) deep and the Pacific Ocean is 4,188 meters (13,740 feet) deep.

The deepest point in each of the earth's oceans are as follows; the Arctic Ocean's Eurasian Basin at 5,450 meters (17,881 feet) deep, the Indian Ocean's Java Trench at 7,725 meters (25,344 feet) deep, the Atlantic Ocean's Puerto Rico Trench at 8,648 meters (28,374 feet) deep and the Pacific Ocean's Mariana Trench at 11,033 meters (36,201 feet) deep.

The deepest point of the Mariana Trench is called The Challenger Deep , so named after the British exploration vessel HMS Challenger II, and it is located 210 miles south-west of Guam. This depth was reached in 1960 by the Trieste, a manned submersible owned by the U.S. Navy.

In order to better illustrate the actual depth of the Mariana Trench, consider the following; if Mount Everest, which is the tallest point on earth at 8,850 meters (29,035 feet), were set in the Mariana Trench, there would still be 2,183 meters (7,166 feet) of water left above it.

The Mariana Trench is often used as a North-South passage by submarines as it is part of a long system of trenches that circle the Pacific Ocean, connected with the Japan and Kuril Trenches.

Cameras, 3D and brains

Cameron is building full-ocean-depth-rated 3D cameras right now, and we’ll be testing them in a pressure chamber later this fall. We are going to have cameras inside the sub; we’re going to have cameras outside the sub; we’re taking a huge lighting array. We’ll light up the place. We’ll do the same thing we did at abyssal depths, we’ll just do it at Hadal depths.

I think the lessons, the takeaway, for the lay public are deeper and more meaningful when they see it in 3D. You feel engaged. You feel like you are bearing witness to what’s happening, as opposed to watching, and I think these are subtle differences, but they are very real. And I think it has to do with our brain wiring. There’s neuroscience that now shows the regions of the brain that process parallax. They relate it to other parts of the brain that are doing image analysis . . . and giving you all kinds of depth cues that have nothing to do with parallax. But when you add parallax—or stereoscopy, or stereospis as it’s called medically—into it, all of a sudden it all clicks and it becomes very real.


If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Congratulations! Now you can use SolidOpinion commenting system in all its magnificence! Click the link to get your password.

Форма для связи

Name

Email *

Message *