Pages

September 09, 2011

New complex offers potentially safer alternative for gene therapy delivery

Spontaneous ordering of DNA fragments in a special matrix holds the key to creating non-toxic gene therapy delivery vectors, according to a study recently published in the European Physical Journal E.

Scientists from the CNRS Paul Pascal Research Centre, an institute of the University of Bordeaux, France, and colleagues from the Institute of Physics at the University of Sao Paolo, have created a complex system designed to hold DNA fragments in solution between the hydrophilic layers of a matrix of fatty substances (also known as lipids) combined with a surfactant (used to soften the layers’ rigidity). One possible application that has yet to be tested is gene therapy.



The authors found that DNA fragments within the complex self-organise over time. These fragments spontaneously align parallel to one another and form rectangular and hexagonal structures across the layers. The change of atomic-level interactions within the layers and the appearance of interactions at the interface between the layers and the DNA molecules may explain the emergence of ordered structures at high DNA concentrations.

The next step of this research involves elucidating the precise physical forces that hold the complex together. Applications of such technology go beyond gene therapy vector design, as the same principle can be applied for the delivery of other particles such as chemical drugs.

Supramolecular polymorphism of DNA in non-cationic Lα lipid phases


If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
blog comments powered by Disqus