George Church talks about Regeneration using Stem Cells

Technology Review – George Church is most excited about using regeneration as the key to treatments and keeping people health. Regeneration using induced pluripotent stem (IPS) cells. He also wants to get personalized genomics. He wants to establish an IPS line for every single person who gets sequenced. First bone marrow patients. Then skin, then every stem cell line. Initially it will be wealthy people who will try this. Ironically, wealthy people are often willing to be the guinea pigs that are really in a sense the front line of new technologies. They’re the foot soldiers. They’re willing to put themselves at risk, and to spend money on it.

Church: Yes, induced pluripotent stem (IPS) cells (see, “Growing Heart Cells Just for You”). This is where I’m putting almost all of my chips these days, because it combines many of my interests–genomics, sequencing, epigenetics, synthetic biology, stem cells. I don’t think people have fully appreciated how quickly adult stem cells and sequencing and synthetic biology have progressed. They have progressed by orders of magnitude since we got IPS. Before that, they basically weren’t working.

You can use them to reprogram genomes–not sequence them, but to reprogram them genetically and epigenetically. In other words you make the minimum changes it takes to get them where you want them to be genetically and epigenetically and then you program the cells into tissues.

Let’s use stem cells in bone marrow as an example. They are easy to use and to get to work when you implant them in bone marrow. You might one day have three choices. You can have bone marrow from someone else that is matched to you, or that is from you, or bone marrow that is matched to you and comes to you, but is better than you. This better bone marrow might be [engineered to be] resistant to one virus, or to all viruses. It could have a bunch of alleles that you picked out of super centenarians, alleles that you have reason to believe are at least harmless and possibly helpful. So now you have choice, a patient who can take a good bone marrow that he might reject and you’ll be on immunosuppressants your whole life. Or you might use your own, or your own that might fix the cancer, or your own enhanced bone marrow. And you will be able to do that for almost every stem cell population. Some of them are a little bit harder to replace, though.

An entire mouse has been made from IPS cells (in 2009).

Nature – Somatic coding mutations in human induced pluripotent stem cells (9 pages)

Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods, it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous, nonsense or splice variants, and were enriched in genes mutated or having causative effects in cancers.At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies, whereas the rest occurred during or after reprogramming. Thus, hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.

Almost everything I’ve described has been done in rodents, so we’re talking about years, not decades. It’s shorter than the Human Genome Project [which took 13 years], not less expensive, but definitely shorter.

.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks