Pages

July 10, 2011

Light propagation controlled in photonic chips -- major breakthrough in telecommunications field

Researchers at Columbia Engineering School have built optical nanostructures that enable them to engineer the index of refraction and fully control light dispersion. They have shown that it is possible for light (electromagnetic waves) to propagate from point A to point B without accumulating any phase, spreading through the artificial medium as if the medium is completely missing in space. This is the first time simultaneous phase and zero-index observations have been made on the chip-scale and at the infrared wavelength.

Nature Photonics - Zero phase delay in negative-refractive-index photonic crystal superlattices


"We're very excited about this. We've engineered and observed a metamaterial with zero refractive index," said Kocaman. "What we've seen is that the light disperses through the material as if the entire space is missing. The oscillatory phase of the electromagnetic wave doesn't even advance such as in a vacuum — this is what we term a zero-phase delay."

This exact control of optical phase is based on a unique combination of negative and positive refractive indices. All natural known materials have a positive refractive index. By sculpturing these artificial subwavelength nanostructures, the researchers were able to control the light dispersion so that a negative refractive index appeared in the medium. They then cascaded the negative index medium with a positive refractive index medium so that the complete nanostructure behaved as one with an index of refraction of zero.

"Phase control of photons is really important," said Wong. "This is a big step forward in figuring out how to carry information on photonic chips without losing control of the phase of the light."

"We can now control the flow of light, the fastest thing known to us," he continued. "This can enable self-focusing light beams, highly directive antennas, and even potentially an approach to cloak or hide objects, at least in the small-scale or a narrow band of frequencies currently."

We show that optical beams propagating in path-averaged zero-index photonic crystal superlattices can have zero phase delay. The nanofabricated superlattices consist of alternating stacks of negative index photonic crystals and positive index homogeneous dielectric media, where the phase differences corresponding to consecutive primary unit cells are measured with integrated Mach-Zehnder interferometers. These measurements demonstrate that at path-averaged zero-index frequencies the phase accumulation remains constant and equal to zero despite the increase in the physical path length. We further demonstrate experimentally that these superlattice zero- bandgaps remain invariant to geometrical changes of the photonic structure and have a center frequency which is deterministically tunable. The properties of the zero- gap frequencies, optical phase, and effective refractive indices are well described by detailed experimental measurements, rigorous theoretical analysis, and comprehensive numerical simulations.

12 pages of supplemental material


If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
blog comments powered by Disqus