Thinner Nanowires Exhibit Giant Piezoelectricity – 100 times greater Piezoelectric effect

Northwestern University researchers have found that piezoelectricity in GaN and ZnO nanowires is enhanced by as much as two orders (100 times larger)of magnitude as the diameter of the nanowires decrease.

“This finding is very exciting because it suggests that constructing nanogenerators, sensors and other devices from smaller nanowires will greatly improve their output and sensitivity,” Espinosa said.

“We used a computational method called Density Functional Theory (DFT) to model GaN and ZnO nanowires of diameters ranging from 0.6 nanometers to 2.4 nanometers,” Agrawal said. The computational method is able to predict the electronic distribution of the nanowires as they are deformed and, therefore, allows calculating their piezoelectric coefficients.

The researchers’ results show that the piezoelectric coefficient in 2.4 nanometer-diameter nanowires is about 20 times larger and about 100 times larger for ZnO and GaN nanowires, respectively, when compared to the coefficient of the materials at the macroscale. This confirms previous computational findings on ZnO nanostructures that showed a similar increase in piezoelectric properties. However, calculations for piezoelectricity of GaN nanowires as a function of size were carried out in this work for the first time, and the results are clearly more promising as GaN shows a more prominent increase.

“Our calculations reveal that the increase in piezoelectric coefficient is a result of the redistribution of electrons in the nanowire surface, which leads to an increase in the strain-dependent polarization with respect to the bulk materials,” Espinosa said.

Gallium nitride (GaN) and zinc oxide (ZnO) are among the most technologically relevant semiconducting materials. Gallium nitride is ubiquitous today in optoelectronic elements such as blue lasers (hence the blue-ray disc) and light-emitting-diodes (LEDs); zinc oxide also finds many uses in optoelectronics and sensors.

In the past few years, though, nanostructures made of these materials have shown a plethora of potential functionalities, ranging from single-nanowire lasers and LEDs to more complex devices such as resonators and, more recently, nanogenerators that convert mechanical energy from the environment (body movements, for example) to power electronic devices. The latter application relies on the fact that GaN and ZnO are also piezoelectric materials, meaning that they produce electric charges as they are deformed.

Nanoletters – Giant Piezoelectric Size Effects in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation

Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials − zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks