Pages

January 19, 2011

Eyeball camera better than the human eye

The “eyeball camera” has a 3.5x optical zoom, takes sharp images and is only the size of a nickel.

Researchers from Northwestern University and the University of Illinois at Urbana-Champaign are the first to develop a curvilinear camera, much like the human eye, with the significant feature of a zoom capability, unlike the human eye.

The “eyeball camera” has a 3.5x optical zoom, takes sharp images, is inexpensive to make and is only the size of a nickel. (A higher zoom is possible with the technology.)



While the camera won’t be appearing at Best Buy any time soon, the tunable camera -- once optimized -- should be useful in many applications, including night-vision surveillance, robotic vision, endoscopic imaging and consumer electronics

Earlier eyeball camera designs are incompatible with variable zoom because these cameras have rigid detectors. The detector must change shape as the in-focus image changes shape with magnification. Huang and Rogers and their team use an array of interconnected and flexible silicon photodetectors on a thin, elastic membrane, which can easily change shape. This flexibility opens up the field of possible uses for such a system. (The array builds on their work in stretchable electronics.)

The camera system also has an integrated lens constructed by putting a thin, elastic membrane on a water chamber, with a clear glass window underneath.

Initially both detector and lens are flat. Beneath both the membranes of the detector and the simple lens are chambers filled with water. By extracting water from the detector’s chamber, the detector surface becomes a concave hemisphere. (Injecting water back returns the detector to a flat surface.) Injecting water into the chamber of the lens makes the thin membrane become a convex hemisphere.

To achieve an in-focus and magnified image, the researchers actuate the hydraulics to change the curvatures of the lens and detector in a coordinated manner. The shape of the detector must match the varying curvature of the image surface to accommodate continuously adjustable zoom, and this is easily done with this new hemispherical eye camera.

The paper is titled “Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability.”

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Featured articles

Ocean Floor Gold and Copper
   Ocean Floor Mining Company
blog comments powered by Disqus