UCLA Engineers create new transparent electrodes for highly flexible electronics

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have now developed a new transparent electrode based on silver nanowires (AgNW) that could replace ITO (indium-doped tin oxide). The new electrode uses low-cost, non-toxic and stable materials and is easy to fabricate. It is produced on a cross-linked, transparent polyacylate substrate, which is cheaper than glass and can be stiff and rigid or flexible and stretchable.

Currently, indium-doped tin oxide (ITO) technology is used for electrodes in LCD displays, solar cells, iPad and smart-phone touch screens, and organic light-emitting diode (OLED) displays for televisions and computer monitors. But ITO can be fragile and toxic, and it is becoming increasingly more expensive to produce.

The resulting AgNW/polymer electrodes have high transparency, low sheet resistance comparable to ITO, and low surface roughness. They are substantially more compliant than ITO and would be suitable for the fabrication of high-performance and stretchable OLEDs and solar cells.

Advanced Materials – Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes

Shape-memory polymer light-emitting diodes (PLEDs) using a new silver nanowire/polymer electrode are reported. The electrode can be stretched by up to 16% with only a small increase in sheet resistance. Large deformation shape change and recovery of the PLEDs to various bistable curvatures result in minimal loss of electroluminescence performance.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Featured articles

Ocean Floor Gold and Copper
   Ocean Floor Mining Company

var MarketGidDate = new Date();
document.write(”);