Pages

July 13, 2010

New Model Predicts the Organization of Nanoparticles

Ad Support : Nano Technology   Netbook    Technology News    Computer Software
Journal Science - Step-Growth Polymerization of Inorganic Nanoparticles
Currently, no model exists describing the organization of nanoparticles. This work paves the way for the prediction of the properties of nanoparticle ensembles and for the development of new design rules for such structures. It will enable the development of controls for creating larger structures for memory storage and optical waveguides.

Self-organization of nanoparticles is an efficient strategy for producing nanostructures with complex, hierarchical architectures. The past decade has witnessed great progress in nanoparticle self-assembly, yet the quantitative prediction of the architecture of nanoparticle ensembles and of the kinetics of their formation remains a challenge. We report on the marked similarity between the self-assembly of metal nanoparticles and reaction-controlled step-growth polymerization. The nanoparticles act as multifunctional monomer units, which form reversible, noncovalent bonds at specific bond angles and organize themselves into a colloidal polymer. We show that the kinetics and statistics of step-growth polymerization enable a quantitative prediction of the architecture of linear, branched, and cyclic self-assembled nanostructures; their aggregation numbers and size distribution; and the formation of structural isomers.



12 pages of supplemental material

If you liked this article, please give it a quick review on Reddit, or StumbleUpon. Thanks

Supporting Advertising

Business Success
   How to Make Money    
Executive Jobs   
Paid Surveys


Thank You
blog comments powered by Disqus