Pages

July 05, 2010

Desired Sub-5 Nanometer Graphene Nanoribbons Produced

Ad Support : Nano Technology   Netbook    Technology News    Computer Software

Sub-5-nm Graphene Nanoribbons (GNRs) are desirable for high on/off ratio field-effect transistors at room temperature.

Nature Chemistry - Etching and narrowing of graphene from the edges

Large-scale graphene electronics requires lithographic patterning of narrow graphene nanoribbons for device integration. However, conventional lithography can only reliably pattern ∼20-nm-wide GNR arrays limited by lithography resolution, while sub-5-nm GNRs are desirable for high on/off ratio field-effect transistors at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment in the presence of ammonia to afford controlled etch rate (≲ 1 nm min^−1). We fabricated ∼20–30-nm-wide graphene nanoribbon arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10 nm. For the first time, a high on/off ratio up to ∼10^4 was achieved at room temperature for field-effect transistors built with sub-5-nm-wide graphene nanoribbon semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography.



11 pages of supplemental material

If you liked this article, please give it a quick review on Reddit, or StumbleUpon. Thanks

Supporting Advertising

Business Success
   How to Make Money    
Executive Jobs  
Paid Surveys


Thank You
blog comments powered by Disqus