Pages

March 30, 2010

Plastic electronics could slash the cost of solar panels

Supporting Ads: Nano Technology   Netbook    Technology News    Computer Software


Princeton researchers have developed a new way to manufacture electronic devices made of plastic, employing a process that allows the materials to be formed into useful shapes while maintaining their ability to conduct electricity. In the plastic transistor pictured here, the plastic is molded into interdigitated electrodes (orange) allowing current flow to and from the active channel (green). (Image: Loo Research Group)

A new technique developed by Princeton University engineers for producing electricity-conducting plastics could dramatically lower the cost of manufacturing solar panels.

By overcoming technical hurdles to producing plastics that are translucent, malleable and able to conduct electricity, the researchers have opened the door to broader use of the materials in a wide range of electrical devices. Plastics could represent a low-cost alternative to indium tin oxide (ITO), an expensive conducting material currently used in solar panels.



Loo and her colleagues developed a way to relax the structure of the plastics by treating them with an acid after they were processed into the desired form.

Using the method, they were able to make a plastic transistor, a fundamental component of electronics that is used to amplify and switch electronic signals. They produced the electrodes of the transistor by printing the plastic onto a surface, a fast and cheap method similar to the way an ink-jet printer produces a pattern on a piece of paper.

Loo said the technique potentially could be scaled up for mass production presses akin to those used to print newspapers. "Being able to essentially paint on electronics is a big deal," Loo said. "You could distribute the plastics in cartridges the way printer ink is sold, and you wouldn't need exotic machines to print the patterns."

By allowing plastic solar cells to be manufactured using low-cost printing techniques and by replacing ITO as the primary conducting material, the plastics the team developed hold potential for lowering the cost of solar panels.

Currently, the electricity generated by plastic solar cells is collected by a transparent metal conductor made of ITO. The conductor must be transparent so that sunlight can pass through it to the materials in solar cells that absorb the light energy.

A rare and pricey byproduct of mining, ITO had come under increasing demand for use in flat-screen televisions, mobile phones and other devices with display screens. "The cost of indium tin oxide is skyrocketing," Loo said. "To bring down the costs of plastic solar cells, we need to find a replacement for ITO. Our conducting plastics allow sunlight to pass through them, making them a viable alternative."

The researchers anticipate that the plastics also could replace expensive metals used in other electronic devices, such as flexible displays. In addition, the scientists are beginning to explore the use of the plastics in biomedical sensors that would display a certain color if a person had an infection. For instance, the plastics turn from yellow to green when exposed to nitric oxide, a chemical compound produced during ear infections in children.

If the devices could be produced at a low cost, they might be useful in developing countries that lack advanced medical facilities. "You wouldn't need any fancy machines or lab equipment to diagnose an infection," Loo said, "all you would need is your eyes to see the color change in the plastics."

PNAS - Directly patternable, highly conducting polymers for broad applications in organic electronics
Postdeposition solvent annealing of water-dispersible conducting polymers induces dramatic structural rearrangement and improves electrical conductivities by more than two orders of magnitude. We attain electrical conductivities in excess of 50 S/cm when polyaniline films are exposed to dichloroacetic acid. Subjecting commercially available poly(ethylene dioxythiophene) to the same treatment yields a conductivity as high as 250 S/cm. This process has enabled the wide incorporation of conducting polymers in organic electronics; conducting polymers that are not typically processable can now be deposited from solution and their conductivities subsequently enhanced to practical levels via a simple and straightforward solvent annealing process. The treated conducting polymers are thus promising alternatives for metals as source and drain electrodes in organic thin-film transistors as well as for transparent metal oxide conductors as anodes in organic solar cells and light-emitting diodes.

8 pages of supplemental material


Ad Support

Trading Futures
 
Nano Technology
 
Netbook     Technology News
 
Computer Software
   
Future Predictions

Thank You
blog comments powered by Disqus