Bismuth telluride could revolutionize electronics : Electrons travel without energy loss across surface at room temperature


Surface electron band structure of bismuth telluride. (Image courtesy of Yulin Chen and Z. X. Shen.)

Physicists at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have confirmed the existence of a type of material (bismuth Telluride) that could one day provide dramatically faster, more efficient computer chips.

Bismuth Telluride allows electrons on its surface to travel with no loss of energy at room temperatures and can be fabricated using existing semiconductor technologies. Such material could provide a leap in microchip speeds, and even become the bedrock of an entirely new kind of computing industry based on spintronics, the next evolution of electronics.

The experimenters examined bismuth telluride samples using X-rays from the Stanford Synchrotron Radiation Lightsource at SLAC and the Advanced Light Source at Lawrence Berkeley National Laboratory. When Chen and his colleagues investigated the electrons’ behavior, they saw the clear signature of a topological insulator. Not only that, the group discovered that the reality of bismuth telluride was even better than theory.

“The theorists were very close,” Chen said, “but there was a quantitative difference.” The experiments showed that bismuth telluride could tolerate even higher temperatures than theorists had predicted. “This means that the material is closer to application than we thought,” Chen said.

This magic is possible thanks to surprisingly well-behaved electrons. The quantum spin of each electron is aligned with the electron’s motion—a phenomenon called the quantum spin Hall effect. This alignment is a key component in creating spintronics devices, new kinds of devices that go beyond standard electronics. “When you hit something, there’s usually scattering, some possibility of bouncing back,” explained theorist Xiaoliang Qi. “But the quantum spin Hall effect means that you can’t reflect to exactly the reverse path.” As a dramatic consequence, electrons flow without resistance. Put a voltage on a topological insulator, and this special spin current will flow without heating the material or dissipating.

Topological insulators aren’t conventional superconductors nor fodder for super-efficient power lines, as they can only carry small currents, but they could pave the way for a paradigm shift in microchip development. “This could lead to new applications of spintronics, or using the electron spin to carry information,” Qi said. “Whether or not it can build better wires, I’m optimistic it can lead to new devices, transistors, and spintronics devices.”

Fortunately for real-world applications, bismuth telluride is fairly simple to grow and work with. Chen said, “It’s a three-dimensional material, so it’s easy to fabricate with the current mature semiconductor technology. It’s also easy to dope—you can tune the properties relatively easily.”

Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3

Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole-doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to great potential for possible high-temperature spintronics applications.

10 page pdf with supporting material.