Universities of Miami, Tokyo and Tohoku Create Spin Battery


a, Schematic structure of our magnetic tunnel junctions (MTJs), comprising hexagonal (Hex.) NiAs-structure MnAs (20 nm)/GaAs (1 nm)/AlAs (2.1 nm)/GaAs:MnAs (10 nm) thin films grown on a p+GaAs(001) substrate. The GaAs:MnAs film contains zinc-blende-structure (ZB) MnAs nanoparticles. , diameter. b, Transmission electron microscopy lattice image of an MTJ. White circles indicate the areas of zinc-blende MnAs nanoparticles.

Researchers at the University of Miami and at the Universities of Tokyo and Tohoku, Japan, have been able to prove the existence of a “spin battery,” a battery that is “charged” by applying a large magnetic field to nano-magnets in a device called a magnetic tunnel junction (MTJ). The new technology is a step towards the creation of computer hard drives with no moving parts, which would be much faster, less expensive and use less energy than current ones. In the future, the new battery could be developed to power cars.

Like a winding up toy car, the spin battery is “wound up” by applying a large magnetic field –no chemistry involved. The device is potentially better than anything found so far, said Barnes.

“We had anticipated the effect, but the device produced a voltage over a hundred times too big and for tens of minutes, rather than for milliseconds as we had expected,” Barnes said. “That this was counterintuitive is what lead to our theoretical understanding of what was really going on.”

The secret behind this technology is the use of nano-magnets to induce an electromotive force. It uses the same principles as those in a conventional battery, except in a more direct fashion. The energy stored in a battery, be it in an iPod or an electric car, is in the form of chemical energy. When something is turned “on” there is a chemical reaction which occurs and produces an electric current. The new technology converts the magnetic energy directly into electrical energy, without a chemical reaction. The electrical current made in this process is called a spin polarized current and finds use in a new technology called “spintronics.”

The new discovery advances our understanding of the way magnets work and its immediate application is to use the MTJs as electronic elements which work in different ways to conventional transistors. Although the actual device has a diameter about that of a human hair and cannot even light up an LED (light-emitting diode–a light source used as electronic component), the energy that might be stored in this way could potentially run a car for miles. The possibilities are endless, Barnes said.

Abstract: “Electromotive force and huge magnetoresistance in magnetic tunnel junctions”

The electromotive force (e.m.f.) predicted by Faraday’s law reflects the forces acting on the charge, –e, of an electron moving through a device or circuit, and is proportional to the time derivative of the magnetic field. This conventional e.m.f. is usually absent for stationary circuits and static magnetic fields. There are also forces that act on the spin of an electron; it has been recently predicted that, for circuits that are in part composed of ferromagnetic materials, there arises an e.m.f. of spin origin even for a static magnetic field. This e.m.f. can be attributed to a time-varying magnetization of the host material, such as the motion of magnetic domains in a static magnetic field, and reflects the conversion of magnetic to electrical energy. Here we show that such an e.m.f. can indeed be induced by a static magnetic field in magnetic tunnel junctions containing zinc-blende-structured MnAs quantum nanomagnets. The observed e.m.f. operates on a timescale of approximately 10^2–10^3 seconds and results from the conversion of the magnetic energy of the superparamagnetic MnAs nanomagnets into electrical energy when these magnets undergo magnetic quantum tunnelling. As a consequence, a huge magnetoresistance of up to 100,000 per cent is observed for certain bias voltages. Our results strongly support the contention that, in magnetic nanostructures, Faraday’s law of induction must be generalized to account for forces of purely spin origin. The huge magnetoresistance and e.m.f. may find potential applications in high sensitivity magnetic sensors, as well as in new active devices such as ‘spin batteries’.

FURTHER READING
11 page supplemental information.

More pictures and charts