Breakthrough 12.5 Gigabit per second 5G Wireless Communication

Millimetre (mm)-wave’ or microwave photonics could deliver 12.5 Gigabit per second wireless communication as a follow up to 4G mobile communication. It has commercial applications not just in telecommunications (access and in-house networks) but also in instrumentation, radar, security, radio astronomy and other fields. High Gain antennas can boost the range to 1000 meters with 99% availability.

The mm-wave band is the extremely high frequency part of the radio spectrum, from 30 to 300 gigahertz (GHz), and it gets it name from having a wavelength of one to 10mm. Until now, the band has been largely undeveloped, so the new technology makes available for exploitation more of the scarce and much-in-demand spectrum.

IPHOBAC is not simply a ‘paper project’ where the technology is researched, but very much a practical exercise to develop and commercialise a new class of products with a ‘made in Europe’ label on them.

While several companies in Japan and the USA have been working on merging optical and radio frequency technologies, IPHOBAC is the world’s first fully integrated effort in the field, with a lot of different companies involved. This has resulted in the three-year project, which runs until end-2009, already having an impressive list of achievements to its name.

It recently unveiled a tiny component, a transmitter able to transmit a continuous signal not only through the entire mm-wave band but beyond. Its full range is 30 to 325GHz and even higher frequency operation is now under investigation. The first component worldwide able to deliver that range of performance, it will be used in both communications and radar systems. Other components developed by the project include 110GHz modulators, 110GHz photodetectors, 300GHz dual-mode lasers, 60GHz mode-locked lasers, and 60GHz transceivers.



The same technology has been demonstrated for access telecom networks and has delivered world record data rates of up to 12.5Gb/s over short- to medium-range wireless spans, or 1500 times the speed of upcoming 4G mobile networks.

One way in which the technology can be deployed in the relatively short term, according to Stöhr, is wirelessly supporting very fast broadband to remote areas. “You can have your fibre in the ground delivering 10Gb/s but we can deliver this by air to remote areas where there is no fibre or to bridge gaps in fibre networks,” he says.

The project is also developing systems for space applications, working with the European Space Agency. Stöhr said he could not reveal details as this has not yet been made public, save to say the systems will operate in the 100GHz band and are needed immediately.

“In just a few years time everybody will be able to see the results of the IPHOBAC project in telecommunications, in the home, in radio astronomy and in space. It is a completely new technology which will be used in many applications even medical ones where mm-wave devices to detect skin cancer are under investigation,” says Stöhr.