Pages

July 28, 2008

Deep burn and seriously scaling nuclear power to 2100 and beyond

Current world nuclear power is 611 million tons of oil equivalent. (multiply by 7.1-7.4 for barrel of oil equivalent)

This is from 64000 tons of Uranium per year being burned at about 5% efficiency. 3200 tons of Uranium if deep burn reactors were used.

Deep burn (50-99%) burn of uranium and thorium for nuclear power can be done with several fission reactor options.

Molten salt - 99% (two were built in the 60s and 70s, India,Japan, Europe have designs and research efforts to bring them back)

Fast neutron (Russia has active breeders since 1980 and has restarted building 800MW plant for 2012, will sell the tech to S Korea, Japan and others including China) Russia's current fast neutron reactors only have about 10-20% burn rates.

Fast neutron reactors are 60 times more efficient with the use of Uranium than typical reactors.

Very high temp gas reactors (65%)

[current High Temperature Pebble Bed Reactors TRISO fuel can achieve 16-18% burn as of 2009]

Accelerator driven reactors (EU)

Uranium hydride reactor (5-10%)

If one had a semi-economical fusion reactor one could process fission waste to enable all current reactors to achieve multi-pass deep burn. One fusion reactor per ten fission reactors.

1 kg of uranium from seawater was obtained by Japan. The japanese process is to use irradiated polymers and stick a braided net of it into the ocean and basically "fish" for 30-90 days for Uranium. There is 4 to 4.6 billion tons of Uranium in seawater. At the $160/kg price, this would be equal to $720 trillion for 4.5 billion tons. This process will not be needed for several decades because of 5.5 million tons of conventional uranium reserves which based on geology is likely 10 million tons of currently known formations and will increase substantally with new exploration.

Better laser enrichment (vs centrifuges) reduces overall material costs per kilogram to more than offset any increase in uranium prices.

There is more thorium than uranium in the earth's crust.

Conventional reactor construction has been as high as 12 completions in one year in the USA (1972) and 24 completions per year in the world (mid 1980s).

4.5 billion tons of Uranium vs the deep burn equivalent of the 3200 tons of Uranium we use today.

So Deep burn + Uranium from seawater means by 2030 using technology in hand one can have nuclear fission power ready to supply more than 1200 trillion tons of oil equivalent. (one ton of oil is equal to 7.1-7.4 barrels of oil.) that is before we go at more difficult to process uranium/thorium than seawater (there is more on earth and more in the solar system - asteroids, moon)

So nuclear fission would have 8500 trillion barrels of oil equivalent.

Looks like sufficiently easy energy to me. 850 times more than some estimates of total coal, oil and natural gas.

China is planning to buy 100 AP-1000 nuclear reactors for completion or being built by 2020. They will be factory mass producing high temperature reactors. India has indicated a deep commitment to using their thorium resources.

China and India the countries that need more energy the most are going deeply into nuclear fission power.

The electrification of the transportation and other parts of the world economy is happening over the next two decades. The transition is workable and the long term is workable.


Uranium from Seawater will be scalable when we need the process
In it's current state, the JAERI (uranium from seawater) technique can collect 1 ton of natural uranium in 240 days, using an apparatus weighing roughly 1000 tons (i.e. 3000 cages x 350 kg/cage).

Details on scaling up worked up by Japanese and Russians.

The recovery cost was estimated to be 5-10 times of that from mining uranium. More than 80% of the total cost was occupied by the cost for marine equipment for mooring the adsorbents in seawater, which is owing to the weight of metal cage for adsorbents. Thus, the cost can be reduced to half by the reduction of the equipment weight to 1/4.

So to produce 60,000 tons/year of uranium would take 60 million tons of absorbents using current inefficient lab scale methods. 15 million tons with currently foreseen improvements.

Link to polyethylene production.

Divert 1% of the polyethylene for 10 years when you decide to scale up the seawater extraction. Then you can make a little over 1 of the 10,000/ton year processes each year. In ten years you have 100,000/ton year.

The world capacity of polyethylene production increased up to 70 million tons per year, the polyethylene output in 2005 amounted to 65 million per year

The cost quote was 600,000 yen/ton unwoven + 87,700 yen per ton for polymerization
If the cost of polymerization were to increase then you can scale that cost factor up from the time of the study. The unwoven material is unlikely to go up that much because if new polyethylene got very expensive you can always recycle the hundreds of millions of tons of it that we already have.

Around 5.5 million tonnes of uranium that could be economically mined (at today's spot prices) has been identified around the world. That figure is up 17 per cent compared to that from the last edition of Uranium 2007: Resources, Production and Demand---a report colloquially known as the Red Book and co-published every two years by the Organisation for Economic Co-operation and Development Nuclear Energy Agency and the International Atomic Energy Agency.

And, according to the report, there's plenty more where that came from, with expected uranium discoveries based on the geologic characteristics of known resources jumping to 10.5 million tonnes (plus reserves increase if the dollar value of the uranium is higher. ie there is more there is we are willing to pay for it). Undiscovered conventional resources is expected to be triple this number. Plus there is 22 million tons estimated to be in phosphates. [see page 23 of the 2003 redbood presentation, Uranium from phosphates is mature].

Canada and France were the only countries to report exploration expenses in 2002 and only $18 million was spent looking for Uranium in 2003.

We will not go through the current reserves of uranium and thorium for decades. Plus with deep burn we would use current "nuclear waste" first. So seawater for uranium does not come into the picture for 5 decades or more. Plenty of time to perfect it before scaling.

Thorium/uranium fuel rods are close to being commercialized for use in existing reactors. The earth's crust has three times more thorium than uranium.

Environmental impact: Far less than fossil fuels. See how destructive mountain top removal mining for the US

See china's coal mining. Look at the processes for getting oil and oilsands.

Having nets in the oceans can be managed. the middle of the ocean off the continental shelf has minimal fish.
there are large dead zones where there are no fish
Fish farming produce 50% of our fish now so I would expect there to be almost no dependence on wild fishing
in twenty years.

Nuclear plants possible build and replacement reactors

What would an agressive build up of nuclear reactors from now up to and through 2100 look like ? Many have a disbelief in scaling and the speed with which we could move to nuclear and then the ability to use nuclear for thousands of years after 2100.

The current type of reactors are the primary ones built for the next 20 years. 2030-2040 would see a transition.
2020 onwards all current PWR reactors that had enough operating life left would have the 50% annular fuel uprate. Boiler water reactors would have different uprates for 30% gains.
Current reactors have already gotten extensions to 60 years of operation and extensions to 70-80 years is possible

Idaho national labs has a plan for the current light water reactors.

Stretch Goals:
1. Life extension of the current fleet beyond 60 years (e.g., what would it take to extend all lives to ~80 years?); and
2. Strong, sustained expansion of ALWRs throughout this century (e.g., what would it take to proceed uninterrupted from first new plant deployments in ~2015 to sustained build-rates approaching 10+/year?).

Current style light water reactors can get ==== high-burnup (HBU) fuel [85 Gwd/t target]. The HBU fuel program is expected to take about 10 years, and involves test and qualification of innovative fuels with uranium enrichment above 5%
The limit is 914 Gigawatt days per ton where 99%+ of the uranium/thorium is used in molten salt reactors.

More efficient use of uranium than current reactors at 20-50 Gigawatt days per ton.

Note: Japan is working to extend to 70 years for their plants

Achieving a build rate of 10 plants per year, which on a sustained basis equates to about 50 plants under construction at any point in time, will require substantial investment in workforce training and new or refurbished manufacturing capability.

More automation would reduce the staffing requirements while maintaining safety and operational efficiency.

Staffing an expanding nuclear industry.

Massive nuclear buildup is not constrained by raw materials.

Materials used for wind and other energy sources compared
Update on material usage for more modern wind turbines

Supply chain issues like large forgings for containment domes are being addressed.
To go along with the 600 ton forgings that are made by Japan steel, Russia can make forgings, and South Korea is taking orders for delivery in a couple of years, China and UK are also ramping up.
China is willing to use a technique used a couple of decades ago. Weld two 300 ton forgings together.
Candu and high temp reactors do not use the large 600 ton forgings. Areva (france nuclear) is looking at new designs that do not need the 600 ton forgings.

From 2010-2020 avg of 10-20 light water reactor completions per year
2013+ prove out commercial high temp reactor in china, Mass production start 2016+. 2 year construction times. (200MW)
2012+ uranium hydride reactors (25MWe)

2020-2030 avg of 30-50 light water reactor completions per year worldwide (new reactors at 1.5-1.8GW, before 50% power uprate)
30-100 high temp reactors/year (250MW using brayton cycle for higher efficiency)
50-200 uranium hydride reactors (30Mwe)

2030-2050 100-200 light water reactor completions per year worldwide. (3 GW avg, using better fuel with uprates)
50-1000 high temp reactors/year (300MW using higher efficiency design)
100-2000 uranium hydride reactors
100-200 molten salt reactors

2050+ Shift over to molten salt reactors and accelerator driven reactors and other designs that leave less than 1% waste.
Fully reprocess so that there is no left over uranium/thorium/plutonium.
Reactor life should be 80+ years
If you have 800 nuclear reactors then an avg of 10 per year need to be replaced with 80 year lifespan.
If you have 8000 reactors then an avg of 100 per year need to be replaced.
Uranium hydride type reactors need refueling every 5-10 years.
Current plants also need periodic refueling

Location for plants
Superconducting energy grid. So plants can be placed anywhere with virtually zero transmission losses.

Would use land currently used for coal plants (2000+ in the USA now), natural gas plants, and load up existing nuclear plant sites with more reactors.

Environmental impact: Far less than fossil fuels.

Depleted Uranium and what to do with the waste/unburned fuel
Initially the current 60,000 tons/year would scale up to 150,000-450,000 tons/year and then decrease as deep burn systems came online and eliminated the accumulated unburned fuel.

The volume of 60,000 tons is less than one container ship. Because of the density of the uranium, 60,000 tons can be stacked up on a basketball size court sized warehouse. I would leave the fuel onsite at the plants which usually have 2-4+ square miles of land.

Again leave the waste/unburned fuel until we deep burn it for energy.

By 2050+ we should be able to burn all of the uranium/thorium/plutonium. The rest has less than 30 year half life and a lot of that has economic and constructive uses.

Ramping up and Full scale nuclear society
How long does it take to ramp up to 17000GW ? 25-35 years.

Nuclear power is currently 6.3% of total power including oil.
16 times more than the 2800TWh would enough to replace other electrical sources and transportation if transportation if it was electrified.

Total electricity is 18300 TWh in 2007. So six times current nuclear is current world electricity. 2400 GW of nuclear replaces current world electricity (higher
operating load factor for nuclear)
+40% for 2020
+100 for 2030.
So 4800 GW of nuclear replaces projected 2030 electricity.

By that time the deep burn reactors should be all of the new reactor construction and seawater extraction of Uranium will have been further developed and refined and ready to step in to provide scaled up uranium demand. Most of the nuclear fuel use at that time will be from the legacy reactors with 10-15% of fuel used even with upgrading of the systems to annular fuel and other retrofits. A nuclear reactor fleet of pure deep burn total of 17000GW would only use 6500 tons/year about 10% of current uranium usage.

The optimistic build rate was 10-20 reactor completions for LWR and maybe 1000 of the high temperature reactors and uranium hydride reactors until 2020. The high temperature reactors that China is making will start off at 80 Gwd/t and go up to 240GWd/t (with the ability to burn existing "waste")
by 2020 we can apply the 50% power uprate to existing reactors so instead of 50Gwd/ton we get 75 GWd/t.

So by 2020, significant deep burn capability with 240 GWd/t. The uranium hydride reactors could go to 450-500GWd/t and thorium versions could be made.

Let us look on the high side and say 200 large 1.7GW reactors (50% uprated).
Existing reactors maintained and uprated.
480GWe from new large reactors. (75Gwd/t) 50,000 tons/year
Existing reactors 600GWe (70 GWd/t), 64,000 tons per year.
600 Small reactors 250 MWe reactors (HTR 250GWd/t) 3,000 tons per year able to use current waste)
1000 25MWe Uranium hydride (400 GWd/t) 900 tons per year

1230 GW using 118000 tons per year. 50% of worlds electricity assuming a 20% increase in usage up to 2020.

Parallel to the nuclear build (and more renewables like wind, solar and geothermal), convert transportation and other uses from fossil fuel to electric. Electric cars etc...

Until 2030, let us say avg 50 LWR completions. 500 over the decade.
Reactors from 2020 still around. 1080 GWe (80GWd/t further fuel refinement)
200,000 tons/year total

Small reactors from 2020.
New small reactors.
Molten salt reactors, larger volume of fast breeders, accelerator driven reactors come online.
4000GWe using 250,000 tons/year 100% of worlds electricity assuming a 100% increase from 2008. The GWe is less than current GW, but the operating efficiency is higher so more quad/TWh.

So it is 2040-2050 before currently known conventional reserves start getting tapped even with aggressive reactor build. More conventional reserves will be found. flyash from used coal is being processed. higher concentrations in phosphates and brine.

Build construction should be 2-3 years for the bigger reactors and 1 year for the factory mass produced small reactors. Those build times could be less with contour crafting (printing of concrete structures with carbon nanotube reinforcement)

After 70-80+ years the nuclear plants will be dis-assembled and decommissioned as designed and planned already. New reactors will go up where the old ones were.

Yes a lot of reactors willl be in the process of being built but they should be factory produced or mostly printed onsite. I am projecting a powerful society and civilization that continues to grow its GDP and build more. But instead of digging up 6 billion-10 billion tons of coal and building multiple coal plants per year it is making nuclear power with some wind, solar, geothermal as well.

The world has over 8000 coal plants now and thousands more natural gas plants and they are comparable in size to nuclear reactor facilities and refueling those coal plants takes massive use of trains and trucks. They also use water for cooling.

World use of concrete is about 2.5 billion tons per year and growing at 135 million tons per year.
World steel production is about 1.3 billion tons per year and is growing.

A future economy ten times, one hundred times or one thousand times bigger will be using a lot of materials and energy even when future efficiency is factored in.

This is what takes to make everyone rich. Everyone in the developing world like China and India and the other nations following them. Everyone in the currently developed world becoming richer.

Getting richer and having more economy means everything scales up.

Safety
Nuclear plant failure. there are containment domes and there are distances from reactors to population centers. The High temperature reactors are meltdown proof. Turn off the coolant, walk away and it does not meltdown.

By 2020-2025, the aggressive build plan will have displaced most coal
by 2030, a lot of oil and natural gas would be displaced.
The reduction in air pollution would save 2-3+ million lives per year.

Any nuclear accidents would still show a net gain in lives saved by getting out of coal and oil. Coal and oil and natural gas currently kill millions/year even without any accidents.

Genetically engineer people to be more radiation resistant. Do not leave people vulnerable and requiring perfectly safe systems. This will be needed anyway because human security will need to assume that dirty bombs or nuclear weapons might eventually be used. Not because any risk from nuclear reactors but because advancing technology makes it easier and easier to make weapons.

Proliferation

Iran already knows how to make nuclear weapons because they were told in the 1970s be Khan of Pakistan.

The list of technogies that could lead to nuclear weapons grade material is growing longer and longer. Centrifuges, lasers, nanotech membranes, molecular nanotechnology etc...

In the long run countries like Iran cannot be prevented from getting better weapons if they really desire them other by conquering or killing them.

The leave civilization vulnerable and try to keep control of the availability of weapons is not a sustainable approach.

Eventually we must assume that weapons will be available. Then it is a matter of deterring usage and limiting damage from weapons that are used.

A boxer cannot go into the ring assuming that they will not be punched and to fold when the first punch is landed.

Better houses and buildings can be made to resist over-pressures from nuclear weapons. Hurricane resistant nails and improved building standards are a first step. Reinforce buildings with carbon fiber and eventually carbon nanotube thread/straps.
Reduce the radius of catastrophoc damage from nuclear weapons.

Hurricane category five resistant building

Some of the materials that can be used are 8000PSI stuccomax and windows able to resist 10PSI.

Need to make more esthetically pleasing building with Cat 25 resistance.

Nuclear Blast damage range calculator

Overpressure Key
15 psi Complete destruction of reinforced concrete structures, such as skyscrapers, will occur within this ring. Between 7 psi and 15 psi, there will be severe to total damage to these types of structures.

5 psi Complete destruction of ordinary houses, and moderate to severe damage to reinforced concrete structures, will occur within this ring.

2 psi Severe damage to ordinary houses, and light to moderate damage to reinforced concrete structures, will occur within this ring.

1 psi Light damage to all structures, and light to moderate damage to ordinary houses, will occur within this ring.

0.25 psi Most glass surfaces, such as windows, will shatter within this ring, some with enough force to cause injury.

Current buildings have trouble at 1-2psi. This is stupid as they are not only not resistant to nuclear bombs at large distances but also to tornadoes, earthquakes and hurricanes.

Redesigns can be done to make buildings resistant to 7-15psi without greatly altering esthetics or greatly increasing costs.

New technology can take this up higher and if monolithic domes are esthetically acceptable then hundreds of PSI resistant buildings can be made.

If buildings are not destroyed or so easily set on fire then nuclear autumn issues are also reduced as most of the climate effects are from a lot of things being set on fire.

FURTHER READING
Nuclear for oilsands and discussions around uranium supply

Energy costs with externalities

Feed in tariffs for renewables

A better energy plan

Improving nuclear EROI through laser enrichment starting in 2012

Deaths per twh for different energy sources

China wants 100 westinghouse AP1000 reactors by 2020

13 comments:

Roman said...

Russia has been running fast nukes since 1973. BN-350 achieved criticality in early 70ies.

bw said...

Russia has had the BN600 running since the 1980s. They are building the BN800 and have a BN1200 in the planning stages. They also are working on the Brest 300MW version of a fast neutron reactor. The link the fast neutron reactor article covers this.

Brock said...

Someone tell Virginiatwo. Yeay, NIMBY will not die.

I hope some of the really cool energy tech I've seen on this blog and elsewhere (like Blacklight Power or Polywell) bears fruit, but it's good to know that we've got plenty of options without having to depend on hope. Now all we have to do is hope that politics doesn't kill the technologically feasible.

DV8 2XL said...

Good post and excellent review of the situation to date.

There are no real technical obstacles to a nuclear.electric energy economy, only political, and these are slowly giving way to to the reality that this is the only real path. Unfortunately misinformation has led to the widespread belief that there is a way to meet our needs through wind, solar and other renewable sources, and that is shaping up to be the biggest opposition to perusing the nuclear option as vigorously as it should be. As long as people believe that these alternatives are viable, nuclear will face an uphill battle.

The sooner this pipe dream of windmills and solar panels is abandoned, the sooner the real work to secure our energy future can begin in earnest.

jmuckerheide said...

Note that the oceans inventory of uranium is a function of chemistry, U solubility. Seawater contains a relatively constant 3.3 ppb U, roughly 4.5 billion tons U.

As U is removed from seawater (as it is taken up by corals and other marine life, and decays) dissolution of U in ocean silts and discharges from deep hydrothermal vents and continental shelf cold seeps, and from rivers, etc., are dissolved into the oceans.

As a billion tons of U is removed from the oceans, the oceans are likely to contain about 4.5 billion tons of U at 3.3 ppb.

jmuckerheide said...

The nuclear plant build rate in the 1970s-80s was greater than 30 per year if we include the plants manufactured but construction not completed because of the overbuilding of baseload capacity, high interest rates, and the Chernobyl accident, especially in Europe and the Soviet Union.

A much more aggressive build-up can be achieved, although the annular fuel conversion, if achieved, will required a great many turbines.

See an article on building 5000 to 6000 (1 GW equivalent) nuclear plants by the 2050s at:

http://www.radscihealth.org/rsh/papers/Muckerheide05_21stC-6000plants.pdf

qraal said...

Hi Brian

Deep Burn uranium reactors could burn uranium from sea-water for billions of years, because of the continually regenerated nature of the uranium dissolved - it comes from the continents via erosion and thus is a renewable resource. The annual inflow is roughly ~60,000 tons per year, which is the energy equivalent of ~ 172 TW.yr - almost 12 times current energy usage globally. That should be enough for everyone on Earth to live reasonably well.

Cyril R said...

The sooner this pipe dream of windmills and solar panels is abandoned, the sooner the real work to secure our energy future can begin in earnest.

The sooner people will stop thinking like that, the sooner the real work to get rid of dirty coal will begin in earnest.

No, too much to ask. Everyone is biased.

DV8 2XL said...

Cyril, when you can prove that these sources can provide the energy you think they do I will change my tune in an instant. The problem for me is that I have the education and the practical knowledge developed over several years in industry to evaluate what the facts are in alternate energy and right now it could not hope to replace any fossil fuel generation or even slow the its growth in any meaningful way.

Posturings from people that are antinuclear and claims from those selling these systems don't cut it for me, and they shouldn't for you.

Will Brown said...

As Cyril r and DV8 2XL (cute screen name that; I like it) illustrate, there are basicly two separate arguments being conflated in the energy debate.

The one regards wind and solar, which have a reasonably well established viable application at the individual user level of application. The most common examples being for remote locations or as a back-up system for emergency individual circumstance.

The other is the industrial application and the population-dense urban consumer market. For this, the level of production requirements far outweigh any forseeable development in solar or wind technology. Thus, nuclear seems to be the best (from a variety of perspectives) option to develop into the future.

Proponents of one application arguing with those from the other don't offer any sort of positive contribution to the discussion.

Of either.

Let's at least try to keep our arguments orderly, shall we? Yeah, I know, good luck with all that! :)

DV8 2XL said...

Will,

While you are right about some viable applications for wind and solar - and I've never said otherwise - most of the proponents of these technologies do believe that they can. They argue that nuclear is in fact unnecessary because of this.

I have been debating this issue all over the net for many years and found this to be a recurring theme. The problem is that the more hope is pinned on wind and solar, the latter the real solutions will wait.

Roman said...

Solar and wind are not viable for baseload, and will not be in 20 years.

at any rate, wind and solar will ALWAYS remain niche, and will never become mainstream sources of energy.

As civilization progresses, demand for electricity(energy in general, electricity being its most pliable form) will only increase, and most likely, exponentially. afaik - we only have so many deserts and roofs, and their area isnt growing exponentially.

Solar first needs to mature to the point where commercial solar plants that are competitive (without incredible subsidies solar enjoys today)with nuclear power plants at _midnight_. Then it might be considered to have become mainstream source of energy. Until then - it's a very nice, very useful technology, but a niche one.

Wind - useless, and will always be, in my opinion. With that much materials required for inefficient and unstable power output - it's only viable because of current political climate, and general hysteria regarding nuclear power.

Read up on incredible failure of wind in Denmark.

Denmark - highest electricity costs. France - lowest.

France - nuclear. Denmark - wind.

I don't know how to explain it any better.

Once reality kicks in, people will wise up. we just need wait.

Also, I find it very odd that while CO2 is considered to be the devil himself, yet, disrupting winds that even out temperatures and climate across the entire globe is somehow OK.


The real target is aneutronic fusion, preferably compact.

temp said...

Photovoltaics ("solar cells") are decreasing exponentially in cost. In a few years they'll be cheap enough to cap oil prices. A few more years and there won't be much reason to develop any other kind of energy. They'll stop pumping oil because it will be uncompetitive. Build nukes? Forget it, won't be cost effective by the time the agressive build program would be able to get seriously underway.