Pages

June 10, 2008

Modelling and Enabling a Manufacturing and Construction Revolution

This site recently discussed the seeds of Manufacturing and construction revolution.

The seeds of the revolution are:
- Contour crafting (scaling up inkjet/rapid prototyping up to making buildings, cement jet) Use cement as the ink. Layer by layer additive construction. 200 times
faster than conventional methods. 5 times lower cost for construction.

- Inflatable electric cars. Flatship cars from a factory like Ikea furniture and could be as cheap as $2500 for an environmentally friendly car.

- Reel to reel production of electronics can be hundreds to thousands of times faster than current lithography factories for making computers and factories for making electronics, televisions, video monitors.

Other seeds are
- wafer scale self assembly of nanoscale components
- Nanotubes and more new materials (nanosteel able to withstand higher temperatures and retain strength)
- wood based fibers able to make paper and cardboard stronger than cast iron. Cheap and plentiful material that could be strong enough for many applications.

Making things 100 times faster than we do now would require a lot more planning to prevent many unintended problems. We need to take the best methods of today like Building Information Modelling and city planning and take those to the next level as well.

Modelling and Planning the Manufacturing and Construction Revolution

Once a computer model of a building has been created, it is possible to extract detailed plans of particular subsystems, such as cooling, water and electrical wiring

The Economist magazine talks about the shift for architects from 2-d blueprints to 3d databases. The amount of data and the variables that are modeled need to be increased. A denser data version of Second Life [virtual world modeling] needs to be made. Various proposed construction can be planned out to end of life.

Elaborate digital models for cities. Currently architecture and city planning are mostly 2-Dimensional professions.

Modeling to get better estimates, schedules and then simulate.

Building Information Management detail or greater fed into Second life virtual reality with many scenarios and at faster than real-time simulation modes.

There should also be various inexpensive real-time sensors tracking various aspects of safety and feeding models with updates on the current situation.

- Time and infrastructure health of surrounding systems and buildings relative to next maintenance task
- Actual emissions at and around the building site
- Traffic and people flow and usage patterns

More rapid and cheap construction could help address things like the California Dike problem.

Advanced City Planning
More detailed data, with more frequent updates at the city and larger scales. Various links on the subject are below.

Urban info modeling

Virtual reality in city planning process.

More frequently updated and detailed views of the real world from Everyscape and google Earth and other sources.

Virtual reality cityscapes

Plan NYC

New true 3 dimensional displays will help with the visualization process

Open geospatial BIM

Accelerating the Economy
Accelerating the economy while maintaining or improving safety will require coordination and effort. Just like being able to have trains move faster and with fewer delays requires planning, coordination and effort.

Looking at the "mundane possible speedups" [not using nanofactory level molecular nanotechnology or Artificial general intelligence] will also flesh out the requirements for MNT speeds.

Each of the levels of faster speed would require consideration.

10 times faster construction would mean - less time for various checks from weeks to days.

100 times faster means minutes for turnarounds or everything pre-checked and approved.

1000 times means all interested parties must have their issues pre-thought out for work in the pipeline up to one year in advance. A pre-planned city wide wiki of intersection projects. New software and new project planning may be required to enable each level.

Plans would be going into a queue for simulation, software-agent first pass comments and validations.

How modularized and disconnected can things safely be? The more compartimentalized things can be then the more simplicity and speed can be retained. There is value to higher safe development speeds.

20% growth - 1997-98 Internet time across the whole economy
If Robin Hanson is correct about the economics of the singularity, this would be the real long economic boom.

FURTHER READING
building-information modelling (BIM).

BIMStorm, open source BIM



BIM and Beyond
Beyond BIM article
BIM article
BIM at wikipedia
Virtual design and construction at wikipedia
Google search on beyond BIM

Five fallacies of BIM from Autodesk (CAD software maker]

CityGML

Chuck Eastman, a professor of architecture and computing at the Georgia Institute of Technology in Atlanta is one of the champions of BIM.

1 comments:

Theory Shaw said...

Considering Second Life's potential to be used as a global BIM of sorts, you might find the following interest.

Out of 566 registered entries from 57 countries, Studio Wikitecture won the overall ‘Founder’s Award’ for their open-source entry to a competition hosted by Architecture for Humanity on the Open Architecture Network. In keeping with the collaborative spirit of the Open Architecture Network, their entry for a tele-medicine facility in Western Nepal was chosen “for embracing a truly collaborative way of working using online crowdsourcing and Second Life as a way to create a highly participatory design approach.” Source

Having conducted a number of experiments over the last year into the feasibility of applying an open-source paradigm to the practice of architecture, the Studio Wikitecture group developed a 3D-Wiki plug-in on the virtual reality platform, Second Life, that they used to help build consensus among the numerous contributors in this open-source project.

The ‘Wiki-Tree’ as it was called, acted as a version tracking system that worked very much like a conventional Wiki, but instead of tracking text documents in a linear history as you see in Wikipedia, the ‘Wiki-Tree’ tracked versions of 3-dimensional models and saved them within a continually evolving 3-dimensional digital tree ‘canopy’. Similar to Wikipedia, this 3D-Wiki allowed this loose, self-organized group of contributors to share ideas, edit the contributions of others, and vote on which design iterations should be considered for further refinement.

Over and above the actual building design, Studio Wikitecture's entry proposed that the wiki-tree and virtual model live on pass the competition and be used to help incorporate feedback from the Nepalese community and end-users into evolving design.

In addition, they proposed that the virtual platform would allow individuals from around the world to experience the local site and conditions as the project evolves over time, further expanding the outreach, awareness and support for this project to a global audience.

The winning entry was the result of Studio Wikitecture’s 3rd Wikitecture experiment to explore the procedures and protocols necessary to practice a more open and distributed approach to architectural design. Of those, the group explored prediction market voting procedures to assure consensus or 'Crowd Wisdom', as well as developed a contribution assessment system to divvy up fair ownership among all the contributors.

The Final Competition Boards: http://flickr.com/photos/studiowikitecture/sets/72157604038184909/show/

A time-lapse video of the evolving design:
http://youtube.com/watch?v=amCi90zH3VI

A video illustrating how the ‘Wiki-Tree’ works:
http://youtube.com/watch?v=Z3eWKIJxzyc

A journal article outlining, in detail, the three Wikitecture experiments:
http://crescendodesign.com/103_chase.pdf

The accompanying website:
http://studiowikitecture.com/ (click on ‘go’ twice to enter anonymously)

The Blog:
http://studiowikitecture.wordpress.com/