Pages

January 30, 2008

Nanofibers in complex shapes and unlimited lengths

The continuous fabrication of complex, three-dimensional nanoscale structures and the ability to grow individual nanowires of unlimited length are now possible with a process developed by researchers at the University of Illinois.

Based on the rapid evaporation of solvent from simple “inks,” the process has been used to fabricate freestanding nanofibers, stacked arrays of nanofibers and continuously wound spools of nanowires. Potential applications include electronic interconnects, biocompatible scaffolds and nanofluidic networks.

They have fabricated freestanding nanofibers approximately 25 nanometers in diameter and 20 microns long, and straight nanofibers approximately 100 nanometers in diameter and 16 millimeters long (limited only by the travel range of the device that moves the micropipette).


The researchers drew nanofibers out of sugar, out of potassium hydroxide (a major industrial chemical) and out of densely packed quantum dots. While the nanofibers are currently fabricated from water-based inks, the process is readily extendable to inks made with volatile organic solvents, Yu said.

“Our procedure offers an economically viable alternative for the direct-write manufacture of nanofibers made from many materials,” Yu said. “In addition, the process can be used to integrate nanoscale and microscale components.”



FURTHER READING
Min-Feng Yu led the research

Beckman institute

Min Feng's page at the Beckman Institute, Nanoelectronics group

Min-Feng Yu research publications list

Mechanical science and Engineering at the University of Illinois at Urbana-champaign

Center for Microanalysis of Materials website

Yu Research on Nanoscale Mechanics and Physics page: NOTE: slow page, not updated since 2006

Advanced Materials Journal will publish the article

0 comments: