FPGAs can accelerate repetitive computer operations up to 1000 times

FPGA processing accelerators have been developed. Warp processing” gives a computer chip the ability to improve its performance over time.

Here’s how Warp processing works: When a program first runs on a microprocessor chip (such as a Pentium), the chip monitors the program to detect its most frequently-executed parts. The microprocessor then automatically tries to move those parts to a special kind of chip called a field-programmable gate array, or FPGA. “An FPGA can execute some (but not all) programs much faster than a microprocessor – 10 times, 100 times, even 1,000 times faster,” explains Vahid.

“If the microprocessor finds that the FPGA is faster for the program part, it automatically moves that part to the FPGA, causing the program execution to ‘warp.’” By performing optimizations at runtime, Warp processors also eliminate tool flow restrictions, as well as the extra designer effort associated with traditional compile-time optimizations.

FPGAs can benefit a wide range of applications, including video and audio processing; encryption and decryption; encoding; compression and decompression; bioinformatics – anything that is compute-intensive and operates on large streams of data. Consumers who want to enhance their photos using Photoshop or edit videos on their desktop computers will find that Warp processing speeds up their systems, while gamers will immediately notice the difference in better graphics and performance. Additionally, embedded systems such as medical instrument or airport security scanners can perform real-time recognition using Warp-enhanced FPGAs.

This new method only uses the FPGA when it detects performance gains are being made. The computer with FPGA warp processing will adapt to each individuals specific workload. Therefore, this will have a wide impact and effortless impact on the part of the user.

Comments are closed.