A boost for solar cells with photon fusion

From Physorg.com, an innovative process that converts low-energy longwave photons (light particles) into higher-energy shortwave photons has been developed by a team of researchers at the Max Planck Institute for Polymer Research in Mainz and at the Sony Materials Science Laboratory in Stuttgart

The efficiency of solar cells today is limited, among other reason, by the fact that the longwave, low-energy part of the sunlight cannot be used. A process that increases the low level of energy in the light particles (photons) in the longwave range, shortening their wave length, would make it possible for the solar cells to use those parts of light energy that, up to now, have been lost, resulting in a drastic increase in their efficiency. The equivalent has only been achieved previously with high-energy density laser light which, under certain conditions, combines two low-energy photons into one high-energy photon – a kind of photon fusion.

As this procedure allows previously unused parts of sunlight to be used in solar cells, the scientists are hoping that it offers the ideal starting point for more efficient solar cells. To optimize the process and to bring it closer to an application, they are testing new pairs of substances for other colors in the light spectrum and are experimenting with integrating them in a polymer matrix.