September 07, 2006

Harvard University engineers demonstrate laser nanoantenna

It is called a plasmonic laser antenna, the design consists of a metallic nanostructure, known as an optical antenna, integrated onto the facet of a commercial semiconductor laser.

"The optical antenna collects light from the laser and concentrates it to an intense spot measuring tens of nanometers, or about one-thousandth the width of a single human hair," says Crozier. "The device could be integrated into optical data storage platforms and used to write bits far smaller than what's now possible with conventional methods. This could lead to vastly increased storage capacities in the terabyte range (a thousand gigabytes)."

The new device integrates an optical antenna and a laser into a single unit, consists of fewer components, has a smaller footprint (takes up less space), and benefits from an improved signal-to-noise ratio relative to previous approaches. The inventors expect, with further development, its wide adoption and use in academic and research settings as well as in the high-tech commercial sector.

"Eventually, we envision the laser integrated into new probes for biology like optical tweezers -- which can manipulate objects as small as a single atom," says Crozier. "It could also be used for integrated-circuit fabrication or to test impurities during the fabrication process itself. One day, consumers might be able to back up three terabytes data on one disk."