nanoscale technology: Artificial muscle advance

Researchers at the University of Dallas have created alcohol- and hydrogen-powered artificial muscles that are 100 times stronger than natural muscles, able to do 100 times greater work per cycle and produce, at reduced strengths, larger contractions than natural muscles. Among other possibilities, these muscles could enable fuel-powered artificial limbs, “smart skins” and morphing structures for air and marine vehicles, autonomous robots having very long mission capabilities and smart sensors that detect and self-actuate to change the environment. The team from UTD’s NanoTech Institute developed two different types of artificial muscles that, like natural muscles, convert the chemical energy of an energetic fuel to mechanical energy. The fuel-powered muscles can be easily downsized to the micro- and nano-scales, and arrays of such micro-muscles could be used in “smart skins” that improve the performance of marine and aerospace vehicles. By replacing metal catalyst with tethered enzymes, it might eventually be possible to use artificial muscles powered by food-derived fuels for actuation in the human body – perhaps even for artificial hearts. Darpa is interested in using this advancement for autonomous humanoid robots that protect people from danger, artificial limbs that act like natural limbs and exoskeletons that provide super-human strength to firefighters, astronauts and soldiers — all of which are able to perform lengthy missions by using shots of alcohol as a highly energetic fuel.