Pages

December 09, 2005

Bulk nanotechnology: New material twice as impact resistant as any other armor

An Israeli company, Apnano materials, has recently tested one of the most shock-resistant materials known to man. Five times stronger than steel and at least twice as strong as any impact-resistant material currently in use as protective gear, the new nano-based material is on its way to becoming the armor of the future. A sample of the material was subjected to severe shocks generated by a steel projectile traveling at velocities of up to 1.5 km/second. The material withstood the shock pressures generated by the impacts of up to 250 tons per square centimeter. This is approximately equivalent to dropping four diesel locomotives onto an area the size of one’s fingernail. During the test the material proved to be so strong that after the impact the samples remained essentially identical compared to the original material. Additionally, a recent study by Prof. J. M. Martin from Ecole Central de Lyon in France tested the new material under isostatic pressure and found it to be stable up to at least 350 tons/cm2. The group had found that certain inorganic compounds such as WS2, MoS2, TiS2 and NbS2 that normally occur as large flat platelets can be synthesized into much smaller nano-spheres and nano-tubes which they named inorganic fullerene-like nanostructures or IF for short. The new IF material produced by the Weizmann Group was made of Tungsten Disulfide (WS2). In contrast to organic Fullerenes, IF is easier and much less expensive to produce, it is chemically stable and is less reactive and consequently less flammable. Tungsten Disulfide is relatively heavy and for that reason ApNano is currently experimenting with other materials such as Titanium Disulfide which is at least four times lighter and is expected to perform even better than Tungsten Disulfide against shock waves. the company is moving into semi-industrial manufacturing within the next six months producing between 100-200 kilograms of the material per day, gradually moving to full-scale industrial production by 2007, creating several tons each day.

0 comments: